18 resultados para SEMISIMPLE FINITE-DIMENSIONAL JORDAN SUPERALGEBRA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The non-semisimple gl(2)k current superalgebra in the standard basis and the corresponding non-unitary conformal field theory are investigated. Infinite families of primary fields corresponding to all finite-dimensional irreducible typical and atypical representations of gl(212) and three (two even and one odd) screening currents of the first kind are constructed explicitly in terms of ten free fields. (C) 2004 Elsevier B.V All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Representations of the superalgebra osp(2/2)(k)((1)) and current superalgebra. osp(2/2)k in the standard basis are investigated. All finite-dimensional typical and atypical representations of osp(2/2) are constructed by the vector coherent state method. Primary fields of the non-unitary conformal field theory associated with osp(2/2)(k)((1)) in the standard basis are obtained for arbitrary level k. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Entanglement is defined for each vector subspace of the tensor product of two finite-dimensional Hilbert spaces, by applying the notion of operator entanglement to the projection operator onto that subspace. The operator Schmidt decomposition of the projection operator defines a string of Schmidt coefficients for each subspace, and this string is assumed to characterize its entanglement, so that a first subspace is more entangled than a second, if the Schmidt string of the second majorizes the Schmidt string of the first. The idea is applied to the antisymmetric and symmetric tensor products of a finite-dimensional Hilbert space with itself, and also to the tensor product of an angular momentum j with a spin 1/2. When adapted to the subspaces of states of the nonrelativistic hydrogen atom with definite total angular momentum (orbital plus spin), within the space of bound states with a given total energy, this leads to a complete ordering of those subspaces by their Schmidt strings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concept of biperfect (noncocommutative) weak Hopf algebras is introduced and their properties are discussed. A new type of quasi-bicrossed products is constructed by means of weak Hopf skew-pairs of the weak Hopf algebras which are generalizations of the Hopf pairs introduced by Takeuchi. As a special case, the quantum double of a finite dimensional biperfect (noncocommutative) weak Hopf algebra is built. Examples of quantum doubles from a Clifford monoid as well as a noncommutative and noncocommutative weak Hopf algebra are given, generalizing quantum doubles from a group and a noncommutative and noncocommutative Hopf algebra, respectively. Moreover, some characterizations of quantum doubles of finite dimensional biperfect weak Hopf algebras are obtained. (C) 2004 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When can a quantum system of finite dimension be used to simulate another quantum system of finite dimension? What restricts the capacity of one system to simulate another? In this paper we complete the program of studying what simulations can be done with entangling many-qudit Hamiltonians and local unitary control. By entangling we mean that every qudit is coupled to every other qudit, at least indirectly. We demonstrate that the only class of finite-dimensional entangling Hamiltonians that are not universal for simulation is the class of entangling Hamiltonians on qubits whose Pauli operator expansion contains only terms coupling an odd number of systems, as identified by Bremner [Phys. Rev. A 69, 012313 (2004)]. We show that in all other cases entangling many-qudit Hamiltonians are universal for simulation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The marsh porosity method, a type of thin slot wetting and drying algorithm in a two-dimensional finite element long wave hydrodynamic model, is discussed and analyzed to assess model performance. Tests, including comparisons to simple examples and theoretical calculations, examine the effects of varying the marsh porosity parameters. The findings demonstrate that the wetting and drying concept of marsh porosity, often used in finite element hydrodynamic modeling, can behave in a more complex manner than initially expected.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Analytical solutions are presented for linear finite-strain one-dimensional consolidation of initially unconsolidated soil layers with surcharge loading for both one- and two-way drainage. These solutions complement earlier solutions for initially unconsolidated soil layers without surcharge and initially normally consolidated soil layers with surcharge. Small-strain solutions for the consolidation of initially unconsolidated soil layers with surcharge loading are also presented, and the relationship between the earlier solutions for initially unconsolidated soil without surcharge and the corresponding small-strain solutions, which was not addressed in the earlier work, is clarified. The new solutions for initially unconsolidated soil with surcharge loading can be applied to the analysis of low stress consolidation tests and to the partial validation of numerical solutions of non-linear finite-strain consolidation. They also clarify a formerly perplexing aspect of finite-strain solution charts first noted in numerical solutions. Copyright (C) 2004 John Wiley Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of three dimensional effects on isochromatic birefringence is evaluated for planar flows by means of numerical simulation. Two fluid models are investigated in channel and abrupt contraction geometries. In practice, the flows are confined by viewing windows, which alter the stresses along the optical path. The observed optical properties differ therefore from their counterpart in an ideal two-dimensional flow. To investigate the influence of these effects, the stress optical rule and the differential propagation Mueller matrix are used. The material parameters are selected so that a retardation of multiple orders is achieved, as is typical for highly birefringent melts. Errors due to three dimensional effects are mainly found on the symmetry plane, and increase significantly with the flow rate. Increasing the geometric aspect ratio improve the accuracy provided that the error on the retardation is less than one order. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Earthquakes have been recognized as resulting from stick-slip frictional instabilities along the faults between deformable rocks. A three-dimensional finite-element code for modeling the nonlinear frictional contact behaviors between deformable bodies with the node-to-point contact element strategy has been developed and applied here to investigate the fault geometry influence on the nucleation and development process of the stick-slip instability along an intra-plate fault through a typical fault bend model, which has a pre-cut fault that is artificially bent by an angle of 5.6degrees at the fault center. The numerical results demonstrate that the geometry of the fault significantly affects nucleation, termination and restart of the stick-slip instability along the intra-plate fault, and all these instability phenomena can be well simulated using the current finite-element algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes recent advances made in computational modelling of the sugar cane liquid extraction process. The saturated fibro-porous material is rolled between circumferentially grooved rolls, which enhance frictional grip and provide a low-resistance path for liquid flow during the extraction process. Previously reported two-dimensional (2D) computational models, account for the large deformation of the porous material by solving the fully coupled governing fibre stress and fluid-flow equations using finite element techniques. While the 2D simulations provide much insight into the overarching cause-effect relationships, predictions of mechanical quantities such as roll separating force and particularly torque as a function of roll speed and degree of compression are not satisfactory for industrial use. It is considered that the unsatisfactory response in roll torque prediction may be due to the stress levels that exist between the groove tips and roots which have been largely neglected in the geometrically simplified 2D model. This paper gives results for both two- and three-dimensional finite element models and highlights their strengths and weaknesses in predicting key milling parameters. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present results of application of the density functional theory (DFT) to adsorption and desorption in finite and infinite cylindrical pores accounting for the density distribution in radial and axial directions. Capillary condensation via formation of bridges is considered using canonical and grand canonical versions of the 2D DFT. The potential barrier of nucleation is determined as a function of the bulk pressure and the pore diameter. In the framework of the conventional assumptions on intermolecular interactions both 1D and 2D DFT versions lead to the same results and confirm the classical scenario of condensation and evaporation: the condensation occurs at the vapor-like spinodal point, and the evaporation corresponds to the equilibrium transition pressure. The analysis of experimental data on argon and nitrogen adsorption on MCM-41 samples seems to not completely corroborate this scenario, with adsorption branch being better described by the equilibrium pressure - diameter dependence. This points to the necessity of the further development of basic representations on the hysteresis phenomena.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We extend the projected Gross-Pitaevskii equation formalism of Davis [Phys. Rev. Lett. 87, 160402 (2001)] to the experimentally relevant case of thermal Bose gases in harmonic potentials and outline a robust and accurate numerical scheme that can efficiently simulate this system. We apply this method to investigate the equilibrium properties of the harmonically trapped three-dimensional projected Gross-Pitaevskii equation at finite temperature and consider the dependence of condensate fraction, position, and momentum distributions and density fluctuations on temperature. We apply the scheme to simulate an evaporative cooling process in which the preferential removal of high-energy particles leads to the growth of a Bose-Einstein condensate. We show that a condensate fraction can be inferred during the dynamics even in this nonequilibrium situation.