137 resultados para Retrieval models
Resumo:
Studies of delayed nonmatching-to-sample (DNMS) performance following lesions of the monkey cortex have revealed a critical circuit of brain regions involved in forming memories and retaining and retrieving stimulus representations. Using event-related functional magnetic resonance imaging (fMRI), we measured brain activity in 10 healthy human participants during performance of a trial-unique visual DNMS task using novel barcode stimuli. The event-related design enabled the identification of activity during the different phases of the task (encoding, retention, and retrieval). Several brain regions identified by monkey studies as being important for successful DNMS performance showed selective activity during the different phases, including the mediodorsal thalamic nucleus (encoding), ventrolateral prefrontal cortex (retention), and perirhinal cortex (retrieval). Regions showing sustained activity within trials included the ventromedial and dorsal prefrontal cortices and occipital cortex. The present study shows the utility of investigating performance on tasks derived from animal models to assist in the identification of brain regions involved in human recognition memory.
Resumo:
In this paper, we compare a well-known semantic spacemodel, Latent Semantic Analysis (LSA) with another model, Hyperspace Analogue to Language (HAL) which is widely used in different area, especially in automatic query refinement. We conduct this comparative analysis to prove our hypothesis that with respect to ability of extracting the lexical information from a corpus of text, LSA is quite similar to HAL. We regard HAL and LSA as black boxes. Through a Pearsonrsquos correlation analysis to the outputs of these two black boxes, we conclude that LSA highly co-relates with HAL and thus there is a justification that LSA and HAL can potentially play a similar role in the area of facilitating automatic query refinement. This paper evaluates LSA in a new application area and contributes an effective way to compare different semantic space models.
Resumo:
Even when data repositories exhibit near perfect data quality, users may formulate queries that do not correspond to the information requested. Users’ poor information retrieval performance may arise from either problems understanding of the data models that represent the real world systems, or their query skills. This research focuses on users’ understanding of the data structures, i.e., their ability to map the information request and the data model. The Bunge-Wand-Weber ontology was used to formulate three sets of hypotheses. Two laboratory experiments (one using a small data model and one using a larger data model) tested the effect of ontological clarity on users’ performance when undertaking component, record, and aggregate level tasks. The results indicate for the hypotheses associated with different representations but equivalent semantics that parsimonious data model participants performed better for component level tasks but that ontologically clearer data model participants performed better for record and aggregate level tasks.
Resumo:
Domain specific information retrieval has become in demand. Not only domain experts, but also average non-expert users are interested in searching domain specific (e.g., medical and health) information from online resources. However, a typical problem to average users is that the search results are always a mixture of documents with different levels of readability. Non-expert users may want to see documents with higher readability on the top of the list. Consequently the search results need to be re-ranked in a descending order of readability. It is often not practical for domain experts to manually label the readability of documents for large databases. Computational models of readability needs to be investigated. However, traditional readability formulas are designed for general purpose text and insufficient to deal with technical materials for domain specific information retrieval. More advanced algorithms such as textual coherence model are computationally expensive for re-ranking a large number of retrieved documents. In this paper, we propose an effective and computationally tractable concept-based model of text readability. In addition to textual genres of a document, our model also takes into account domain specific knowledge, i.e., how the domain-specific concepts contained in the document affect the document’s readability. Three major readability formulas are proposed and applied to health and medical information retrieval. Experimental results show that our proposed readability formulas lead to remarkable improvements in terms of correlation with users’ readability ratings over four traditional readability measures.
Resumo:
Objective:To investigate the effects of bilateral, surgically induced functional inhibition of the subthalamic nucleus (STN) on general language, high level linguistic abilities, and semantic processing skills in a group of patients with Parkinson’s disease. Methods:Comprehensive linguistic profiles were obtained up to one month before and three months after bilateral implantation of electrodes in the STN during active deep brain stimulation (DBS) in five subjects with Parkinson’s disease (mean age, 63.2 years). Equivalent linguistic profiles were generated over a three month period for a non-surgical control cohort of 16 subjects with Parkinson’s disease (NSPD) (mean age, 64.4 years). Education and disease duration were similar in the two groups. Initial assessment and three month follow up performance profiles were compared within subjects by paired t tests. Reliability change indices (RCI), representing clinically significant alterations in performance over time, were calculated for each of the assessment scores achieved by the five STN-DBS cases and the 16 NSPD controls, relative to performance variability within a group of 16 non-neurologically impaired adults (mean age, 61.9 years). Proportions of reliable change were then compared between the STN-DBS and NSPD groups. Results:Paired comparisons within the STN-DBS group showed prolonged postoperative semantic processing reaction times for a range of word types coded for meanings and meaning relatedness. Case by case analyses of reliable change across language assessments and groups revealed differences in proportions of change over time within the STN-DBS and NSPD groups in the domains of high level linguistics and semantic processing. Specifically, when compared with the NSPD group, the STN-DBS group showed a proportionally significant (p
Resumo:
Traditionally the basal ganglia have been implicated in motor behavior, as they are involved in both the execution of automatic actions and the modification of ongoing actions in novel contexts. Corresponding to cognition, the role of the basal ganglia has not been defined as explicitly. Relative to linguistic processes, contemporary theories of subcortical participation in language have endorsed a role for the globus pallidus internus (GPi) in the control of lexical-semantic operations. However, attempts to empirically validate these postulates have been largely limited to neuropsychological investigations of verbal fluency abilities subsequent to pallidotomy. We evaluated the impact of bilateral posteroventral pallidotomy (BPVP) on language function across a range of general and high-level linguistic abilities, and validated/extended working theories of pallidal participation in language. Comprehensive linguistic profiles were compiled up to 1 month before and 3 months after BPVP in 6 subjects with Parkinson's disease (PD). Commensurate linguistic profiles were also gathered over a 3-month period for a nonsurgical control cohort of 16 subjects with PD and a group of 16 non-neurologically impaired controls (NC). Nonparametric between-groups comparisons were conducted and reliable change indices calculated, relative to baseline/3-month follow-up difference scores. Group-wise statistical comparisons between the three groups failed to reveal significant postoperative changes in language performance. Case-by-case data analysis relative to clinically consequential change indices revealed reliable alterations in performance across several language variables as a consequence of BPVP. These findings lend support to models of subcortical participation in language, which promote a role for the GPi in lexical-semantic manipulation mechanisms. Concomitant improvements and decrements in postoperative performance were interpreted within the context of additive and subtractive postlesional effects. Relative to parkinsonian cohorts, clinically reliable versus statistically significant changes on a case by case basis may provide the most accurate method of characterizing the way in which pathophysiologically divergent basal ganglia linguistic circuits respond to BPVP.
Resumo:
The Gaudin models based on the face-type elliptic quantum groups and the XYZ Gaudin models are studied. The Gaudin model Hamiltonians are constructed and are diagonalized by using the algebraic Bethe ansatz method. The corresponding face-type Knizhnik–Zamolodchikov equations and their solutions are given.
Resumo:
In this review we demonstrate how the algebraic Bethe ansatz is used for the calculation of the-energy spectra and form factors (operator matrix elements in the basis of Hamiltonian eigenstates) in exactly solvable quantum systems. As examples we apply the theory to several models of current interest in the study of Bose-Einstein condensates, which have been successfully created using ultracold dilute atomic gases. The first model we introduce describes Josephson tunnelling between two coupled Bose-Einstein condensates. It can be used not only for the study of tunnelling between condensates of atomic gases, but for solid state Josephson junctions and coupled Cooper pair boxes. The theory is also applicable to models of atomic-molecular Bose-Einstein condensates, with two examples given and analysed. Additionally, these same two models are relevant to studies in quantum optics; Finally, we discuss the model of Bardeen, Cooper and Schrieffer in this framework, which is appropriate for systems of ultracold fermionic atomic gases, as well as being applicable for the description of superconducting correlations in metallic grains with nanoscale dimensions.; In applying all the above models to. physical situations, the need for an exact analysis of small-scale systems is established due to large quantum fluctuations which render mean-field approaches inaccurate.
Resumo:
Many images consist of two or more 'phases', where a phase is a collection of homogeneous zones. For example, the phases may represent the presence of different sulphides in an ore sample. Frequently, these phases exhibit very little structure, though all connected components of a given phase may be similar in some sense. As a consequence, random set models are commonly used to model such images. The Boolean model and models derived from the Boolean model are often chosen. An alternative approach to modelling such images is to use the excursion sets of random fields to model each phase. In this paper, the properties of excursion sets will be firstly discussed in terms of modelling binary images. Ways of extending these models to multi-phase images will then be explored. A desirable feature of any model is to be able to fit it to data reasonably well. Different methods for fitting random set models based on excursion sets will be presented and some of the difficulties with these methods will be discussed.
Resumo:
Except for a few large scale projects, language planners have tended to talk and argue among themselves rather than to see language policy development as an inherently political process. A comparison with a social policy example, taken from the United States, suggests that it is important to understand the problem and to develop solutions in the context of the political process, as this is where decisions will ultimately be made.
Resumo:
Business process design is primarily driven by process improvement objectives. However, the role of control objectives stemming from regulations and standards is becoming increasingly important for businesses in light of recent events that led to some of the largest scandals in corporate history. As organizations strive to meet compliance agendas, there is an evident need to provide systematic approaches that assist in the understanding of the interplay between (often conflicting) business and control objectives during business process design. In this paper, our objective is twofold. We will firstly present a research agenda in the space of business process compliance, identifying major technical and organizational challenges. We then tackle a part of the overall problem space, which deals with the effective modeling of control objectives and subsequently their propagation onto business process models. Control objective modeling is proposed through a specialized modal logic based on normative systems theory, and the visualization of control objectives on business process models is achieved procedurally. The proposed approach is demonstrated in the context of a purchase-to-pay scenario.