61 resultados para Receptor Type
Resumo:
A novel photoactivatable analog of antisauvagine-30 (aSvg-30), a specific antagonist for corticotropin-releasing factor (CRF) receptor, type 2 (CRF2), has been synthesized and characterized. The N-terminal amino-acid D-Phe in aSvg-30 [D-Phe11,His12] Svg((11-40)) was replaced by a phenyldiazirine, the 4-(1-azi-2,2,2-trifluoroethyl) benzoyl (ATB) residue. The photoactivatable aSvg-30 analog ATB-[ His12] Svg was tested for its ability to displace [I-125-Tyr0] oCRF or [I-125-Tyr0]Svg from membrane homogenates of human embryonic kidney (HEK) 293 cells stably transfected with cDNA coding for rat CRF receptor, type 1 ( rCRF(1)) or mouse CRF receptor, type 2beta (mCRF(2beta)). Furthermore, the ability of ATB- [His12] Svg((12-40)) to inhibit oCRF- or Svg-stimulated cAMP production of transfected HEK 293 cells expressing either rCRF(1) (HEK-rCRF(1) cells) or mCRF(2beta) (HEK-mCRF(2beta) cells) was determined. Unlike astressin and photo astressin, ATB- [His12]Svg((12-40)) showed high selective binding to mCRF(2beta) (K-i = 3.1 +/- 0.2 nM) but not the rCRF(1) receptor (K-i = 142. 5 +/- 22.3 nM) and decreased Svg-stimulated cAMP activity in mCRF(2beta)-expressing cells in a similar fashion as aSvg-30. A66-kDa protein was identified by SDS/PAGE, when the radioactively iodinated analog of ATB- [His12]Svg((12-40)) was covalently linked to mCRF(2beta) receptor. The specificity of the photoactivatable I-125-labeled CRF2beta antagonist was demonstrated with SDS/PAGE by the finding that this analog could be displaced from the receptor by antisauvagine-30, but not other unrelated peptides such as vasoactive intestinal peptide (VIP).
Resumo:
The electroantennogram method was used to investigate the number of distinct olfactory receptor neuron types responding to a range of behaviorally active volatile chemicals in gravid Queensland fruit flies, Bactrocera tryoni. Three receptor neuron types were identified. One type responds to methyl butyrate, 2-butanone, farnesene, and carbon dioxide; a second to ethanol; and a third to n-butyric acid and ammonia. The receptor neuron type responding to methyl butyrate, 2-butanone, farnesene, and carbon dioxide consists of three subtypes. The presence of a limited number of receptor neuron types responding to a diverse set of chemicals and the reception of carbon dioxide by a receptor neuron type that responds to other odorants are novel aspects of the peripheral olfactory discrimination process.
Resumo:
The cut gene of Drosophila melanogaster is an identity selector gene that establishes the program of development and differentiation of external sense organs. Mutations in the cut gene cause a transformation of the external sense organs into chordotonal organs, originally assessed by the use of immunostaining methods [Bodmer et al. (1987): Cell, 51:293-307]. Because of evidence that axonal projections of the transformed neurons within the central nervous system are not completely switched in cut mutants, the transformation of the four cells making up a sense organ was reassessed using single-cell staining with fluorescent dye and differential interface contrast (DIC) microscopy of the embryo and larva. The results provide strong evidence that all cells of the sense organs are completely transformed, exhibiting the morphologies and organelles characteristic of chordotonal sense organs. A comparison of the structures of external sense organs and chordotonal organs indicates that a number of the differences could be due to the degree of development of common structures, and that cut or downstream genes modulate effector genes that are normally utilized in both receptor types. The possible derivation of insect chordotonal and external sense organs from a receptor type found in crustaceans is discussed in the light of arthropod phylogenetics and the molecular genetics of sense organ development. (C) 1997 Wiley-Liss, Inc.
Resumo:
alpha-Conotoxin MII, a 16-residue polypeptide from the venom of the piscivorous cone snail Conus magus, is a potent and highly specific blocker of mammalian neuronal nicotinic acetylcholine receptors composed of alpha 3 beta 2 subunits. The role of this receptor type in the modulation of neurotransmitter release and its relevance to the problems of addiction and psychosis emphasize the importance of a structural understanding of the mode of interaction of MII with the alpha 3 beta 2 interface. Here we describe the three-dimensional solution structure of MIT determined using 2D H-1 NMR spectroscopy. Structural restraints consisting of 376 interproton distances inferred from NOEs and 12 dihedral restraints derived from spin-spin coupling constants were used as input for simulated annealing calculations and energy minimization in the program X-PLOR. The final set of 20 structures is exceptionally well-defined with mean pairwise rms differences over the whole molecule of 0.07 Angstrom for the backbone atoms and 0.34 Angstrom for all heavy atoms. MII adopts a compact structure incorporating a central segment of alpha-helix and beta-turns at the N- and C-termini. The molecule is stabilized by two disulfide bonds, which provide cross-links between the N-terminus and both the middle and C-terminus of the structure. The susceptibility of the structure to conformational change was examined using several different solvent conditions. While the global fold of MII remains the same, the structure is stabilized in a more hydrophobic environment provided by the addition of acetonitrile or trifluoroethanol to the aqueous solution. The distribution of amino acid side chains in MII creates distinct hydrophobic and polar patches on its surface that may be important for the specific interaction with the alpha 3 beta 2 neuronal nAChR. A comparison of the structure of MII with other neuronal-specific alpha-conotoxins provides insights into their mode of interaction with these receptors.
Resumo:
This paper describes the ocular morphology of young adults of the southern hemisphere lamprey Geotria australis, the sole representative of the Geotriidae, and makes comparisons with those of holarctic lampreys (Petromyzontidae). As previously reported for the holarctic lamprey Ichthyomyzon unicuspis [Collin and Fritzsch, 1993], the lens of G. australis is non-spherical and possesses a cone-shaped posterior that may be capable of mediating variable focus. The avascular retina of G. australis is well differentiated, containing three retinal ganglion cell populations, three layers of horizontal cells and three photoreceptor types, in contrast to petromyzontids that contain only two photoreceptor types (short and long), G. australis possesses one rod-like (R1) and two cone-like (C1 and C2) photoreceptors. Although the rodlike receptor in G. australis may be homologous with the short receptors of holarctic lampreys, the two cone-like receptors have morphological characteristics that differ markedly from those of the long receptors of their holarctic counterparts. The features which distinguish the two cone-like receptors from those of the long receptor type in holarctic lampreys are the characteristics of the mitochondria and the presence of large amounts of two different types of stored secretory material in the endoplasmic reticulum of the myoid (refractile bodies). The endoplasmic reticulum of each receptor type has a different shape and staining profile and is polymorphic, each showing a continuum of distension. It is proposed that the presence of two cone-like photoreceptors with different characteristics would increase the spectral range of G. australis and thus be of value during the parasitic phase, when this lamprey lives in the surface marine waters. The irideal flap, present in G. australis but not petromyzontids, would assist in reducing intraocular flare during life in surface waters. The results of this study, which are discussed in the context of the proposed evolution of lampreys, emphasise that it is important to take into account the characteristics of the eyes of southern hemisphere lampreys when making generalizations about the eyes of lampreys as a whole.
Resumo:
Background Twin and family studies have shown that genetic effects explain a relatively high amount of the phenotypic variation in blood pressure. However, many studies have not been able to replicate findings of association between specific polymorphisms and diastolic and systolic blood pressure. Methods In a structural equation-modelling framework the authors investigated longitudinal changes in repeated measures of blood pressures in a sample of 298 like-sexed twin pairs from the population-based Swedish Twin Registry. Also examined was the association between blood pressure and polymorphisms in the angiotensin-I converting enzyme and the angiotensin 11 receptor type 1 with the 'Fulker' test Both linkage and association were tested simultaneously revealing whether the polymorphism is a Quantitative Trait Locus (QTL) or in linkage disequilibrium with the QTL. Results Genetic influences explained up to 46% of the phenotypic variance in diastolic and 63% of the phenotypic variance in systolic blood pressure. Genetic influences were stable over time and contributed up to 78% of the phenotypic correlation in both diastolic and systolic blood pressure. Non-shared environmental effects were characterised by time specific influences and little transmission from one time point to the next. There was no significant linkage and association between the polymorphisms and blood pressure. Conclusions There is a considerable genetic stability in both diastolic and systolic blood pressure for a 6-year period of time in adult life. Non-shared environmental influences have a small long-term effect Although associations with the polymorphisms could not be replicated, results should be interpreted with caution due to power considerations. (C) 2002 Lippincott Williams Wilkins.
Resumo:
Protease-activated receptors type 2 (PAR2) are activated by serine proteases like trypsin and mast cell tryptase. The function and physiological significance of PAR2 receptors is poorly understood, but recent studies suggest a role during inflammatory processes in both airways and intestine. PAR2 receptors are also likely to participate in the control of ion transport in these tissues. We demonstrate that stimulation of PAR2 in airways and intestine significantly enhanced ion transport. Trypsin induced CI- secretion in both airways and intestine when added to the basolateral but not to the luminal side of these tissues. In both airways and intestine, stimulation of ion transport was largely dependent on the increase in intracellular Ca2+. Effects of trypsin were largely reduced by basolateral bumetanide and barium and by trypsin inhibitor. Thrombin, an activator of proteinase-activated receptors types 1, 3, and 4 had no effects on equivalent short-circuit current in either airways or intestine. Expression of PAR2 in colon and airways was further confirmed by reverse transcription-polymerase chain reaction. We postulate that these receptors play a significant role in the regulation of electrolyte transport, which might be important during inflammatory diseases of airways and intestine.
Resumo:
The tartrate-resistant acid phosphatase (TRAP) is present in multiple tissues, including kidney, liver, lung, spleen, and bone. Recent study of (TRAP) gene expression has provided evidence for distinct promoters within the (TRAP) gene, suggesting that the gene has alternative, tissue-preferred mRNA transcripts. Examination of endogenous (TRAP) exon 1B and 1C mRNA transcripts revealed tissue-preferred transcript abundance with increased exon 1B transcripts detected in liver and kidney and increased exon 1C transcripts detected in bone and spleen. In this investigation, we have made transgenic mice that express a marker gene driven by two candidate promoters, designated BC and C, within the (TRAP) gene. The BC and C promoters are 2.2 and 1.6 kb, respectively, measured from the translation initiation site. Evaluation of BC transgenic lines demonstrated robust expression in multiple tissues. In contrast, significant transgene expression was not detected in C transgenic lines. Evaluation of transgene mRNAs in BC transgenic lines revealed that virtually all expression was in the form of B transcripts, suggesting that the tissue-preferred pattern of endogenous (TRAP) was not replicated in the BC transgenic line. Likewise, osteoclastogenic cultures from BC, but not C, transgenic bone marrow cells expressed the transgene following receptor activator of NFkappaB ligand/macrophage colony-stimulating factor stimulation. In conclusion, when compared with the 2.2-kb BC portion of the (TRAP) promoter region, the 1.6-kb C portion does not account for significant gene expression in vivo or in vitro; production of the bone- and spleen-preferred (TRAP) C transcript must depend on regulatory elements outside of the 2.2-kb promoter. As the majority of currently investigated transcription factors that influence transcriptional regulation of osteoclast gene expression bind within the 1.6-kb C portion of the (TRAP) promoter, it is likely that transcription binding sites outside of the 2.2-kb region will have profound effects on regulation of the gene in vivo and in vitro.
Resumo:
The high affinity receptor for human granulocyte-macrophage colony-stimulating factor (GM-CSF) consists of a cytokine-specific alpha-subunit (hGMR alpha) and a common signal-transducing beta-subunit (hpc) that is shared with the interleukin-3 and -5 receptors, We have previously identified a constitutively active extracellular point mutant of hpc, I374N, that can confer factor independence on murine FDC-P1 cells but not BAF-B03 or CTLL-2 cells (Jenkins, B. J., D'Andrea, R. J., and Gonda, T. J. (1995) EMBO J. 14, 4276-4287), This restricted activity suggested the involvement of cell type-specific signaling molecules in the activation of this mutant. We report here that one such molecule is the mouse GMR alpha (mGMR alpha) subunit, since introduction of mGMR alpha, but not hGMR alpha, into BAF-B03 or CTLL-2 cells expressing the I374N mutant conferred factor independence, Experiments utilizing mouse/human chimeric GMR alpha subunits indicated that the species specificity lies in the extracellular domain of GMRa. Importantly, the requirement for mGMR alpha correlated with the ability of I374N (but not wild-type hpc) to constitutively associate with mGMRa. Expression of I374N in human factor-dependent UT7 cells also led to factor-independent proliferation, with concomitant up-regulation of hGMR alpha surface expression. Taken together, these findings suggest a critical role for association with GMR alpha in the constitutive activity of I374N.
Resumo:
The mechanisms involved in angiotensin II type 1 receptor (AT(1)-R) trafficking and membrane localization are largely unknown. In this study, we examined the role of caveolin in these processes. Electron microscopy of plasma membrane sheets shows that the AT(1)-R is not concentrated in caveolae but is clustered in cholesterol-independent microdomains; upon activation, it partially redistributes to lipid rafts. Despite the lack of AT(1)-R in caveolae, AT(1)-R. caveolin complexes are readily detectable in cells co-expressing both proteins. This interaction requires an intact caveolin scaffolding domain because mutant caveolins that lack a functional caveolin scaffolding domain do not interact with AT(1)-R. Expression of an N-terminally truncated caveolin-3, CavDGV, that localizes to lipid bodies, or a point mutant, Cav3-P104L, that accumulates in the Golgi mislocalizes AT(1)-R to lipid bodies and Golgi, respectively. Mislocalization results in aberrant maturation and surface expression of AT(1)-R, effects that are not reversed by supplementing cells with cholesterol. Similarly mutation of aromatic residues in the caveolin-binding site abrogates AT(1)-R cell surface expression. In cells lacking caveolin-1 or caveolin-3, AT(1)-R does not traffic to the cell surface unless caveolin is ectopically expressed. This observation is recapitulated in caveolin-1 null mice that have a 55% reduction in renal AT(1)-R levels compared with controls. Taken together our results indicate that a direct interaction with caveolin is required to traffic the AT(1)-R through the exocytic pathway, but this does not result in AT(1)-R sequestration in caveolae. Caveolin therefore acts as a molecular chaperone rather than a plasma membrane scaffold for AT(1)-R.
Resumo:
We have isolated a cDNA clone from the honeybee brain encoding a dopamine receptor, AmDop2, which is positively coupled to adenylyl cyclase. The transmembrane domains of this receptor are 88% identical to the orthologous Drosophila D2 dopamine receptor, DmDop2, though phylogenetic analysis and sequence homology both indicate that invertebrate and vertebrate D2 receptors are quite distinct. In situ hybridization to mRNA in whole-mount preparations of honeybee brains reveals gene expression in the mushroom bodies, a primary site of associative learning. Furthermore, two anatomically distinct cell types in the mushroom bodies exhibit differential regulation of AmDop2 expression. In all nonreproductive females (worker caste) and reproductive males (drones) the receptor gene is strongly and constitutively expressed in all mushroom body interneurons with small cell bodies. In contrast, the large cell-bodied interneurons exhibit dramatic plasticity of AmDop2 gene expression. In newly emerged worker bees (cell-cleaning specialists) and newly emerged drones, no AmDop2 transcript is observed in the large interneurons whereas this transcript is abundant in these cells in the oldest worker bees (resource foragers) and older drones. Differentiation of the mushroom body interneurons into two distinct classes (i.e., plastic or nonplastic with respect to AmDop2 gene expression) indicates that this receptor contributes to the differential regulation of distinct neural circuits. Moreover, the plasticity of expression observed in the large cells implicates this receptor in the behavioral maturation of the bee.
Resumo:
Classic Hodgkin's lymphoma (HL) tissue contains a small population of morphologically distinct malignant cells called Hodgkin and Reed-Sternberg (HRS) cells, associated with the development of HL. Using 3'-rapid amplification of cDNA ends ( RACE) we identified an alternative mRNA for the DEC-205 multilectin receptor in the HRS cell line L428. Sequence analysis revealed that the mRNA encodes a fusion protein between DEC-205 and a novel C-type lectin DCL-1. Although the 7.5-kb DEC-205 and 4.2-kb DCL-1 mRNA were expressed independently in myeloid and B lymphoid cell lines, the DEC-205/DCL-1 fusion mRNA (9.5 kb) predominated in the HRS cell lines ( L428, KM-H2, and HDLM-2). The DEC-205 and DCL-1 genes comprising 35 and 6 exons, respectively, are juxtaposed on chromosome band 2q24 and separated by only 5.4 kb. We determined the DCL-1 transcription initiation site within the intervening sequence by 5'-RACE, confirming that DCL-1 is an independent gene. Two DEC-205/DCL-1 fusion mRNA variants may result from cotranscription of DEC-205 and DCL-1, followed by splicing DEC-205 exon 35 or 34-35 along with DCL-1 exon 1. The resulting reading frames encode the DEC-205 ectodomain plus the DCL-1 ectodomain, the transmembrane, and the cytoplasmic domain. Using DCL-1 cytoplasmic domain-specific polyclonal and DEC-205 monoclonal antibodies for immunoprecipitation/Western blot analysis, we showed that the fusion mRNA is translated into a DEC-205/DCL-1 fusion protein, expressed in the HRS cell lines. These results imply an unusual transcriptional control mechanism in HRS cells, which cotranscribe an mRNA containing DEC-205 and DCL-1 prior to generating the intergenically spliced mRNA to produce a DEC-205/DCL-1 fusion protein.