20 resultados para Real-Time Decision Support System
Resumo:
A framework for developing marketing category management decision support systems (DSS) based upon the Bayesian Vector Autoregressive (BVAR) model is extended. Since the BVAR model is vulnerable to permanent and temporary shifts in purchasing patterns over time, a form that can correct for the shifts and still provide the other advantages of the BVAR is a Bayesian Vector Error-Correction Model (BVECM). We present the mechanics of extending the DSS to move from a BVAR model to the BVECM model for the category management problem. Several additional iterative steps are required in the DSS to allow the decision maker to arrive at the best forecast possible. The revised marketing DSS framework and model fitting procedures are described. Validation is conducted on a sample problem.
Resumo:
We present the design rationale and basic workings of a low-cost, easy-to-use power system simulator developed to support investigations into human interface design for a hydropower plant. The power system simulator is based on three important components: models of power system components, a data repository, and human interface elements. Dynamic Data Exchange (DDE) allows simulator components to communicate with each other within the simulator. To construct the modules of the simulator we have combined the advantages of commercial software such as Matlab/Simulink, ActiveX Control, Visual Basic and Excel and integrated them in the simulator. An important advantage of our approach is that further components of the simulator now can be developed independently. An initial assessment of the simulator indicates it is fit for intended purpose.
Resumo:
Real-time software systems are rarely developed once and left to run. They are subject to changes of requirements as the applications they support expand, and they commonly outlive the platforms they were designed to run on. A successful real-time system is duplicated and adapted to a variety of applications - it becomes a product line. Current methods for real-time software development are commonly based on low-level programming languages and involve considerable duplication of effort when a similar system is to be developed or the hardware platform changes. To provide more dependable, flexible and maintainable real-time systems at a lower cost what is needed is a platform-independent approach to real-time systems development. The development process is composed of two phases: a platform-independent phase, that defines the desired system behaviour and develops a platform-independent design and implementation, and a platform-dependent phase that maps the implementation onto the target platform. The last phase should be highly automated. For critical systems, assessing dependability is crucial. The partitioning into platform dependent and independent phases has to support verification of system properties through both phases.
Resumo:
Fast Classification (FC) networks were inspired by a biologically plausible mechanism for short term memory where learning occurs instantaneously. Both weights and the topology for an FC network are mapped directly from the training samples by using a prescriptive training scheme. Only two presentations of the training data are required to train an FC network. Compared with iterative learning algorithms such as Back-propagation (which may require many hundreds of presentations of the training data), the training of FC networks is extremely fast and learning convergence is always guaranteed. Thus FC networks may be suitable for applications where real-time classification is needed. In this paper, the FC networks are applied for the real-time extraction of gene expressions for Chlamydia microarray data. Both the classification performance and learning time of the FC networks are compared with the Multi-Layer Proceptron (MLP) networks and support-vector-machines (SVM) in the same classification task. The FC networks are shown to have extremely fast learning time and comparable classification accuracy.