33 resultados para Radical Polymerization, Vinylphosphonic acid, Poly(vinylphosphonic acid), Proton Conductivity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of phenyldithioacetic acid (PDA) in homopolymerizations of styrene or methyl acrylate produced only a small fraction of chains with dithioester end groups. The polymerizations using 1-phenylentyl phenyldithioacetate (PEPDTA) and PDA in the same reaction showed that PDA had little or no influence on the rate or molecular weight distribution even when a 1:1 ratio is used. The mechanistic pathway for the polymerizations in the presence of PDA seemed to be different for each monomer. Styrene favors addition of styrene to PDA via a Markovnikov type addition to form a reactive RAFT agent. The polymer was shown by double detection SEC to contain dithioester end groups over the whole distribution. This polymer was then used in a chain extension experiment and the M-n was close to theory. A unique feature of this work was that PDA could be used to form a RAFT agent in situ by heating a mixture of styrene and PDA for 24 h at 70 degrees C and then polymerizing in the presence of AIBN to give a linear increase in Mn and low values of PDI (< 1.14). In the case of the polymerization of MA with PDA, the mechanism was proposed to be via degradative chain transfer. (c) 2005 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Living radical polymerization has allowed complex polymer architectures to be synthesized in bulk, solution, and water. The most versatile of these techniques is reversible addition-fragmentation chain transfer (RAFT), which allows a wide range of functional and nonfunctional polymers to be made with predictable molecular weight distributions (MWDs), ranging from very narrow to quite broad. The great complexity of the RAFT mechanism and how the kinetic parameters affect the rate of polymerization and MWD are not obvious. Therefore, the aim of this article is to provide useful insights into the important kinetic parameters that control the rate of polymerization and the evolution of the MWD with conversion. We discuss how a change in the chain-transfer constant can affect the evolution of the MWD. It is shown how we can, in principle, use only one RAFT agent to obtain a poly-mer with any MWD. Retardation and inhibition are discussed in terms of (1) the leaving R group reactivity and (2) the intermediate radical termination model versus the slow fragmentation model. (c) 2005 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Block copolymers have become an integral part of the preparation of complex architectures through self-assembly. The use of reversible addition-fragmentation chain transfer (RAFT) allows blocks ranging from functional to nonfunctional polymers to be made with predictable molecular weight distributions. This article models block formation by varying many of the kinetic parameters. The simulations provide insight into the overall polydispersities (PDIs) that will be obtained when the chain-transfer constants in the main equilibrium steps are varied from 100 to 0.5. When the first dormant block [polymer-S-C(Z)=S] has a PDI of 1 and the second propagating radical has a low reactivity to the RAFT moiety, the overall PDI will be greater than 1 and dependent on the weight fraction of each block. When the first block has a PDI of 2 and the second propagating radical has a low reactivity to the RAFT moiety, the PDI will decrease to around 1.5 because of random coupling of two broad distributions. It is also shown how we can in principle use only one RAFT agent to obtain block copolymers with any desired molecular weight distribution. We can accomplish this by maintaining the monomer concentration at a constant level in the reactor over the course of the reaction. (c) 2005 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zirconium phosphate has been extensively studied as a proton conductor for proton exchange membrane (PEM) fuel cell applications. Here we report the synthesis of mesoporous, templated sol-gel zirconium phosphate for use in PEM applications in an effort to determine its suitability for use as a surface functionalised, solid acid proton conductor in the future. Mesoporous zirconium phosphates were synthesised using an acid-base pair mechanism with surface areas between 78 and 177 m(2) g(-1) and controlled pore sizes in the range of 2-4 nm. TEM characterisation confirmed the presence of a wormhole like pore structure. The conductivity of such materials was up to 4.1 x 10(-6) S cm(-1) at 22degreesC and 84% relative humidity (RH), while humidity reduction resulted in a conductivity decrease by more than an order of magnitude. High temperature testing on the samples confirmed their dependence on hydration for proton conduction and low hydroscopic nature. It was concluded that while the conductivity of these materials is low compared to Nafion, they may be a good candidate as a surface functionalised solid acid proton conductor due to their high surface area, porous structure and inherent ability to conduct protons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the first synthesis of amphiphilic four-arm star diblock copolymers consisting of styrene (STY) and acrylic acid (AA) made using reversible addition-fragmentation chain transfer (RAFT; Z group approach with no star-star coupling). The polymerization proceeded in an ideal living manner. The size of the poly(AA(132)-STYm)(4) stars in DMF were small and close to 7 nm, suggesting no star aggregation. Slow addition of water (pH = 6.8) to this mixture resulted in aggregates of 15 stars per micelle with core-shell morphology. Calculations showed that the polyAA blocks were slightly extended with a shell thickness of 15 nm. Treatment of these micelles with piperidine to cleave the block arms from the core resulted in little or no change on micelle size or morphology, but the polyAA shell thickness was close to 29 nm (33 nm is the maximum at full extension) suggesting a release of entropy when the arms are detached from the core molecule. In this work we showed through the use of star amphiphilic polymers that the micelle size, aggregation number, and morphology could be controlled.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The LCST transitions of novel N-isopropylacrylamide ( NIPAM) star polymers, prepared using the four-armed RAFT agent pentaerythritoltetrakis(3-(S-benzyltrithiocarbonyl) propionate) (PTBTP) and their hydrolyzed linear arms were studied using H-1 NMR, PFG-NMR, and DLS. The aim was to determine the effect of polymer architecture and the presence of end groups derived from RAFT agents on the LCST. The LCST transitions of star PNIPAM were significantly depressed by the presence of the hydrophobic star core and possibly the benzyl end groups. The effect was molecular weight dependent and diminished once the number of repeating units per arm >= 70. The linear PNIPAM exhibited an LCST of 35 degrees C, regardless of molecular weight; the presence of both hydrophilic and hydrophobic end groups after hydrolysis from the star core was suggested to cancel effects on the LCST. A significant decrease in R-H was observed below the LCST for star and linear PNIPAM and was attributed to the formation of n-clusters. Application of a scaling law to the linear PNIPAM data indicated the cluster size n = 6. Tethering to the hydrophobic star core appeared to inhibit n-cluster formation in the lowest molecular weight stars; this may be due to enhanced stretching of the polymer chains, or the presence of larger numbers of n-clusters at temperatures below those measured.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the relative photopolymerization efficiency for polymerization of a difunctional acrylate initiated by various N-substituted maleimides in the presence of amine and benzophenone are compared on the basis of a photo-differential scanning calorimetry (photo-DSC) study. The trends in the polymerization rates were obtained from the photopolymerization profiles and expressed in terms of a photoinitiation index, I-p. An N-substituent index, I-s, which indicates whether each N-substituent plays either a positive (when I-s > 1) or a negative (when I-s < 1) role in the initiation process relative to MI (unsubstituted maleimide), was determined. (C) 2003 Society of Chemical Industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polybenzoxazine (PBA-a)/poly(epsilon-caprolactone) (PCL) blends were prepared by an in situ curing reaction of benzoxazine (BA-a) in the presence of PCL. Before curing, the benzoxazine (BA-a)/PCL blends are miscible, which was evidenced by the behaviors of single and composition-dependant glass transition temperature and equilibrium melting point depression. However, the phase separation induced by polymerization was observed after curing at elevated temperature. It was expected that after curing, the PBA-a/PCL blends would be miscible since the phenolic hydroxyls in the PBA-a molecular backbone have the potential to form inter- molecular hydrogen-bonding interactions with the carbonyls of PCL and thus would fulfil the miscibility of the blends. The resulting morphology of the blends prompted an investigation of the status of association between PBA-a and PCL under the curing conditions. Although Fourier-transform infrared spectroscopy (FT-IR) showed that there were intermolecular hydrogen-bonding interactions between PBA-a and PCL at room temperature, especially for the PCL-rich blends, the results of variable temperature FT-IR spectroscopy by the model compound indicate that the phenolic hydroxyl groups could not form efficient intermolecular hydrogen-bonding interactions at elevated temperatures, i.e., the phenolic hydroxyl groups existed mainly in the non-associated form in the system during curing. The results are valuable to understand the effect of curing temperature on the resulting morphology of the thermosetting blends. SEM micrograph of the dichloromethane-etched fracture surface of a 90:10 PBA-a PCL blend showing a heterogeneous morphology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To simulate the process of calcification in hydrogel implants, particularly calcification inside hydrogels, in vitro experiments using two compartment permeation cells have been performed. PHEMA hydrogel membranes were synthesized by free radical polymerization in bulk. The permeability and diffusion coefficient for Ca2+ ions at 37 &DEG; C were determined using Fick's laws of diffusion. It was evident that Ca2+ ions either from CaCl2 or SBF solutions may diffuse through PHEMA hydrogel membranes. The fort-nation of calcium phosphate deposits inside the hydrogel was observed and attributed to a heterogeneous nucleation from diffusing calcium and phosphate ions. The morphology of the deposits both on the surface and inside the hydrogels was found to be similar, i.e. spherical aggregates with a diameter of less than one micron. © 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the successful RAFT-mediated emulsion polymerization of styrene using a non-ionic surfactant (Brij98), the highly reactive 1-phenylethyl phenyldithioacetate (PEPDTA) RAFT agent, and water-soluble initiator ammonium persulfate (APS). The molar ratio of RAFT agent to APS was identical in all experiments. Most of the monomer was contained within the micelles, analogous to microemulsion or miniemulsion systems but without the need of shear, sonication, cosurfactant, or a hydrophobe. The number-average molecular weight increased with conversion and the polydispersity index was below 1.2. This ideal 'living' behavior was only found when molecular weights of 9000 and below were targeted. It was postulated that the rapid transportation of RAFT agent from the monomer swollen micelles to the growing particles was fast on the polymerization timescale, and most if not all the RAFT agent is consumed within the first 10% conversion. In addition, it was postulated that the high nucleation rate from the high rate of exit ( of the R radical from the RAFT agent) and high entry rate from water-phase radicals ( high APS concentration) reduced the effects of 'superswelling' and therefore a similar molar ratio of RAFT agent to monomer was maintained in all growing particles. The high polydispersity indexes found when targeting molecular weights greater than 9000 were postulated to be due to the lower nucleation rate from the lower weight fractions of both APS and RAFT agent. In these cases, 'superswelling' played a dominant role leading to a heterogeneous distribution of RAFT to monomer ratios among the particles nucleated at different times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investigations into the kinetics and mechanism of dithiobenzoate-mediated Reversible Addition-Fragmentation Chain Transfer (RAFT) polymerizations, which exhibit nonideal kinetic behavior, such as induction periods and rate retardation, are comprehensively reviewed. The appreciable uncertainty in the rate coefficients associated with the RAFT equilibrium is discussed and methods for obtaining RAFT-specific rate coefficients are detailed. In addition, mechanistic studies are presented, which target the elucidation of the fundamental cause of rate retarding effects. The experimental and theoretical data existing in the literature are critically evaluated and apparent discrepancies between the results of different studies into the kinetics of RAFT polymerizations are discussed. Finally, recommendations for further work are given. (c) 2006 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Titanium phosphate is currently a promising material for proton exchange membrane fuel cells applications (PEMFC) allowing for operation at high temperature conditions. In this work, titanium phosphate was synthesized from tetra iso-propoxide (TTIP) and orthophosphoric acid (H3PO4) in different ratios by a sol gel method. High BET surface areas of 271 m(2).g(-1) were obtained for equimolar Ti:P samples whilst reduced surface areas were observed by varying the molar ratio either way. Highest proton conductivity of 5.4 x 10(-2) S.cm(-1) was measured at 20 degrees C and 93% relative humidity (RH). However, no correlation was observed between surface area and proton conductivity. High proton conductivity was directly attributed to hydrogen bonding in P-OH groups and the water molecules retained in the sample structure. The proton conductivity increased with relative humidity, indicating that the Grotthuss mechanism governed proton transport. Further, sample Ti/P with 1:9 molar ratio showed proton conductivity in the order of 10(-1) S.cm(-1) (5% RH) and similar to 1.6x10(-2) S.cm(-1) (anhydrous condition) at 200 degrees C. These proton conductivities were mainly attributed to excess acid locked into the functionalized TiP structure, thus forming ionisable protons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soluble linear (non-cross-linked) poly(monoacryloxyethyl phosphate) (PMAEP) and poly(2-(methacryloyloxy)ethyl phosphate) (PMOEP) were successfully synthesized through reversible addition-fragmentation chain transfer (RAFT)-mediated polymerization and by keeping the molecular weight below 20 K. Above this molecular weight, insoluble (cross-linked) polymers were observed, postulated to be due to residual diene (cross-linkable) monomers formed during purification of the monomers, MOEP and MAEP. Block copolymers consisting of PMAEP or PMOEP and poly(2-(acetoacetoxy) ethyl methacrylate) (PAAEMA) were successfully prepared and were immobilized on aminated slides. Simulated body fluid studies revealed that calcium phosphate (CaP) minerals formed on both the soluble polymers and the cross-linked gels were very similar. Both the PMAEP polymers and the PMOEP gel showed a CaP layer most probably brushite or monetite based on the Ca/P ratios. A secondary CaP mineral growth with a typical hydroxyapatite (HAP) globular morphology was found on the PMOEP gel. The soluble PMOEP film formed carbonated HAP according to Fourier transform infrared (FTIR) spectroscopy. Block copolymers attached to aminated slides showed only patchy mineralization, possibly due to the ionic interaction of negatively charged phosphate groups and protonated amines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The RAFT-CLD-T methodology is demonstrated to be not only applicable to 1-substituted monomers such as styrene and acrylates, but also to 1,1-disubstituted monomers such as MMA. The chain length of the terminating macromolecules is controlled by CPDB in MMA bulk free radical polymerization at 80 degrees C. The evolution of the chain length dependent termination rate coefficient, k(t)(i,i), was constructed in a step-wise fashion, since the MMA/CPDB system displays hybrid behavior (between conventional and living free radical polymerization) resulting in initial high molecular weight polymers formed at low RAFT agent concentrations. The obtained CLD of k(t) in MMA polymerizations is compatible with the composite model for chain length dependent termination. For the initial chain-length regime, up to a degree of polymerization of 100, k(t) decreases with alpha (in the expression k(t)(i,i) = k(t)(0) . i(-alpha)) being close to 0.65 at 80 degrees C. At chain lengths exceeding 100, the decrease is less pronounced (affording an alpha of 0.15 at 80 degrees C). However, the data are best represented by a continuously decreasing nonlinear functionality implying a chain length dependent alpha.