33 resultados para Rabies and vaccine
Resumo:
Many viruses including HIV, hepatitis C and hepatitis B, have an outer lipid envelope which maintains inserted viral peptides in the “correct” functional conformation and orientation. Disruption of the lipid envelope by most solvents destroys infectivity and often results in a loss of antigenicity. This communication outlines a novel approach to viral inactivation by specific solvent delipidation which modifies the whole virion rendering it non-infective, but antigenic. Duck hepatitis B virus (DHBV) was delipidated using a diisopropylether (DIPE) and butanol mixture and residual infectivity tested by inoculation into day-old ducks. Delipidation completely inactivated the DHBV (p < 0.001). Delipidated DHBV was then used to vaccinate ducks. Three doses of delipidated DHBV induced anti-DHBs antibody production and prevented high dose challenge infection in five out of six ducks. In comparison, five of six ducks vaccinated with undelipidated DHBV and four of four ducks vaccinated with glutaraldehyde inactivated DHBV were unprotected (p < 0.05). Although this solvent system completely inactivated DHBV, viral antigens were retained in an appropriate form to induce immunity. Delipidation of enveloped viruses with specific organic solvents has potential as the basis for development of vaccines.
Resumo:
Schistosoma japonicum paramyosin, a 97 kDa myofibrillar protein, is a recognized vaccine candidate against schistosomiasis. To improve its expression and to identify protective epitopic regions on paramyosin, the published Chinese Schistosoma japonicum paramyosin cDNA sequence was redesigned using Pichia codon usage and divided into four overlapping fragments (fragments 1, 2, 3, 4) of 747, 651, 669 and 678 bp, respectively. These gene fragments were synthesized and expressed in Pichia pastoris (fragments 2 and 3) or E. coli (fragments 1 and 4). The recombinant proteins were produced at high level and purified using a two-step process involving Ni-NTA affinity chromatography and gel filtration. BALB/c mice were immunized subcutaneously three times at 2-week-intervals with the purified proteins formulated in adjuvant Quil A. The protein fragments were highly immunogenic, inducing high, though variable, ELISA antibody titres, and each was shown to resemble native paramyosin in terms of its recognition by the anti-fragment antibodies in Western blotting. The immunized mice were subjected to cercarial challenge 2 weeks after the final injection and promising protective efficacy in terms of significant reductions in worm burdens, worm-pair numbers and liver eggs in the vaccinated mice resulted. There was no apparent correlation between the antibody titres generated and protective efficacy, as all fragments produced effective but similar levels of protection.
Resumo:
The immune effects of fowlpox virus (FPV) field isolates and vaccine strains were evaluated in chickens infected at the age of 1 day and 6 weeks. The field isolates and the obsolete vaccine strain (FPV S) contained integrated reticuloendotheliosis virus (REV) provirus, while the current vaccine strain (FPVST) carries only REV LTR sequences. An indirect antibody ELISA was used to measure the FPV-specific antibody response. The non-specific humoral response was evaluated by injection of two T-cell-dependent antigens, sheep red blood cells (SRBC) and bovine serum albumin (BSA). There was no significant difference in the antibody response to FPV between chickens infected with FPV various isolates and strains at either age. In contrast, antibody responses to both SRBC and BSA were significantly lower in 1-day-old chickens inoculated with field isolates and FPV S at 2-3 weeks post-inoculation. Furthermore, cell-mediated immune (CMI) responses measured by in vitro lymphocyte proliferation assay and in vivo using a PHA-P skin test were significantly depressed in chickens inoculated with field isolates and FPV S at the same periods. In addition, thymus and bursal weights were lower in infected chickens. These immunosuppressive effects were not observed in chickens inoculated with the current vaccine strain, FPVST, at any time. The results of this study suggest that virulent field isolates and FPV S have immunosuppressive effects when inoculated into young chickens, which appeared in the first 3 weeks post infection. REV integrated in the FPV field isolates and FPV S may have played a central role in the development of immunosuppression. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We investigate the gas-particle dynamics of a device designed for biological pre-clinical experiments. The device uses transonic/supersonic gas flow to accelerate microparticles such that they penetrate the outer skin layers. By using a shock tube coupled to a correctly expanded nozzle, a quasi-one-dimensional, quasi-steady flow (QSF) is produced to uniformly accelerate the microparticles. The system utilises a microparticle cassette (a diaphragm sealed container) that incorporates a jet mixing mechanism to stir the particles prior to diaphragm rupture. Pressure measurements reveal that a QSF exit period - suitable for uniformly accelerating microparticles - exists between 155 and 220 mus after diaphragm rupture. Immediately preceding the QSF period, a starting process secondary shock was shown to form with its (x,t) trajectory comparing well to theoretical estimates. To characterise the microparticle, flow particle image velocimetry experiments were conducted at the nozzle exit, using particle payloads with varying diameter (2.7-48 mu m), density (600-16,800 kg/m(3)) and mass (0.25-10 mg). The resultant microparticle velocities were temporally uniform. The experiments also show that the starting process does not significantly influence the microparticle nozzle exit velocities. The velocity distribution across the nozzle exit was also uniform for the majority of microparticle types tested. For payload masses typically used in pre-clinical drug and vaccine applications (
Resumo:
Carbon nanotubes (CNT) are well-ordered, high aspect ratio allotropes of carbon. The two main variants, single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes (MWCNT) both possess a high tensile strength, are ultra-light weight, and have excellent chemical and thermal stability. They also possess semi- and metallic-conductive properties. This startling array of features has led to many proposed applications in the biomedical field, including biosensors, drug and vaccine delivery and the preparation of unique biomaterials such as reinforced and/or conductive polymer nanocomposites. Despite an explosion of research into potential devices and applications, it is only recently that information on toxicity and biocompatibility has become available. This review presents a summary of the performance of existing carbon biomaterials and gives an outline of the emerging field of nanotoxicology, before reviewing the available and often conflicting investigations into the cytotoxicity and biocompatibility of CNT. Finally, future areas of investigation and possible solutions to current problems are proposed. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
I-2 is an avirulent strain of Newcastle disease virus. During establishment of the I-2 strain master vaccine seed, a series of selection procedures was carried out at 56 degrees C in order to enhance heat resistance. This master seed is used to produce a working seed, which is then employed to produce the vaccine. These two passages are done without further heat selection; however, it is not known how rapidly and to what extent thermostable variants would be lost during further passage. The study was therefore conducted to determine the effect of passage on thermostability of strain I-2. The virus was serially passaged and at various passage levels samples were subjected to heat treatment at 56 degrees C for 120 min. The inactivation rates for infectivity and haemagglutinin (HA) titres were assayed by use of chicken embryonated eggs and HA test, respectively. Thermostability of HA and infectivity of I-2 virus were reduced after 10 and 5 passages, respectively, without heat selection at 56 degrees C. These results suggest that 5 more passages could be carried out between the working seed and vaccine levels without excessive loss of thermostability. This would result in increased vaccine production from a single batch of a working seed.
Resumo:
A cocaine vaccine'' is a promising immunotherapeutic approach to treating cocaine dependence which induces the immune system to form antibodies that prevent cocaine from crossing the blood brain barrier to act on receptor sites in the brain. Studies in rats show that cocaine antibodies block cocaine from reaching the brain and prevent the reinstatement of cocaine self administration. A successful phase 1 trial of a human cocaine vaccine has been reported. The most promising application of a cocaine vaccine is to prevent relapse to dependence in abstinent users who voluntarily enter treatment. Any use of a vaccine to treat cocaine addicts under legal coercion raises major ethical issues. If this is done at all, it should be carefully trialled first, and only after considerable clinical experience has been obtained in using the vaccine to treat voluntary patients. There will need to be an informed community debate about what role, if any, a cocaine vaccine may have as a way of preventing cocaine addiction in children and adolescents.