25 resultados para Pulse Pressure
Resumo:
An increase in left ventricular mass (LVM) occurs in the presence of type 2 diabetes, apparently independent of hypertension (1), but the determinants of this process are unknown. Brachial blood pressure is not representative of that at the ascending aorta (2) because the pressure wave is amplified from central to peripheral arteries. Central blood pressure is probably more clinically important since local pulsatile pressure determines adverse arterial and myocardial remodeling (3,4). Thus, an inaccurate assessment of the contribution of arterial blood pressure to LVM may occur if only brachial blood pressure is taken into consideration. In this study we sought the contribution of central blood pressure (and other interactive factors known to affect wave reflection, e.g., glycemic control and total arterial compliance) to LVM in patients with type 2 diabetes.
Resumo:
Exercise brachial blood pressure ( BP) predicts mortality, but because of wave reflection, central ( ascending aortic) pressure differs from brachial pressure. Exercise central BP may be clinically important, and a noninvasive means to derive it would be useful. The purpose of this study was to test the validity of a noninvasive technique to derive exercise central BP. Ascending aortic pressure waveforms were recorded using a micromanometer-tipped 6F Millar catheter in 30 patients (56 +/- 9 years; 21 men) undergoing diagnostic coronary angiography. Simultaneous recordings of the derived central pressure waveform were acquired using servocontrolled radial tonometry at rest and during supine cycling. Pulse wave analysis of the direct and derived pressure signals was performed offline (SphygmoCor 7.01). From rest to exercise, mean arterial pressure and heart rate were increased by 20 +/- 10 mm Hg and 15 +/- 7 bpm, respectively, and central systolic BP ranged from 77 to 229 mm Hg. There was good agreement and high correlation between invasive and noninvasive techniques with a mean difference (+/- SD) for central systolic BP of -1.3 +/- 3.2 mm Hg at rest and -4.7 +/- 3.3 mm Hg at peak exercise ( for both r=0.995; P < 0.001). Conversely, systolic BP was significantly higher peripherally than centrally at rest (155 +/- 33 versus 138 +/- 32mm Hg; mean difference, -16.3 +/- 9.4mm Hg) and during exercise (180 +/- 34 versus 164 +/- 33 mm Hg; mean difference, -15.5 +/- 10.4 mm Hg; for both P < 0.001). True myocardial afterload is not reliably estimated by peripheral systolic BP. Radial tonometry and pulse wave analysis is an accurate technique for the noninvasive determination of central BP at rest and during exercise.
Resumo:
Central arterial waveforms and related indices of large artery properties can be determined with relative ease. This would make them an attractive adjunct in the risk stratification for cardiovascular disease. Although they have been associated with some classical risk factors and the presence of coronary disease, their prospective value in predicting cardiovascular outcomes is unknown. The present study determined the relative predictive value for cardiovascular disease-free survival of large artery properties as compared with noninvasive brachial blood pressure alone in a population of elderly female hypertensive subjects. We measured systemic arterial compliance, central systolic pressure, and carotid augmentation index in a subset of female participants in the Second Australian National Blood Pressure Study ( untreated blood pressure 169/88 +/- 12/ 8 mm Hg). There were a total of 53 defined events during a median of 4.1 years of follow-up in 484 women with complete measurements. Although baseline blood pressures at the brachial artery predicted cardiovascular disease-free survival ( hazard ratio [HR], 2.3; 95% CI, 1.3 to 4.1 for pulse pressure >= 81 versus < 81 mm Hg; P = 0.01), no such relation was found for carotid augmentation index ( HR, 0.80; 95% CI, 0.44 to 1.44; P value not significant) or systemic arterial compliance ( HR, 1.25; 95% CI, 0.72 to 2.16; P value not significant). Blood pressure, but not noninvasively measured central arterial waveforms, predict outcome in the older female hypertensive patient. Thus, blood pressure measurement alone is superior to measurement of arterial waveforms in predicting outcome in this group.
Resumo:
Pulse transit time (PTT) is a non-invasive measure, defined as time taken for the pulse pressure waves to travel from the R-wave of electrocardiogram to a selected peripheral site. Baseline PTT value is known to be influenced by physiologic variables like heart rate (HR), blood pressure (BP) and arterial compliance (AC). However, few quantitative data are available describing the factors which can influence PTT measurements in a child during breathing. The aim of this study was to investigate the effects of changes in breathing efforts on PTT baseline and fluctuations. Two different inspiratory resistive loading (IRL) devices were used to simulate loaded breathing in order to induce these effects. It is known that HR can influence the normative PTT value however the effect of HR variability (HRV) is not well-studied. Two groups of 3 healthy children ( 0.05) HR changes during all test activities. Results showed that HRV is not the sole contributor to PTT variations and suggest that changes in other physiologic parameters are also equally important. Hence, monitoring PTT measurement can be indicative of these associated changes during tidal or increased breathing efforts in healthy children.
Resumo:
Regular aerobic exercise is recommended by physicians to improve health and longevity. However, individuals exercising in urban regions are often in contact with air pollution, which includes particles and gases associated with respiratory disease and cancer. We describe the recent evidence on the cardiovascular effects of air pollution, and the implications of exercising in polluted environments, with a view to informing clinicians and other health professionals. There is now strong evidence that fine and ultra fine particulate matter present in air pollution increases cardiovascular morbidity and mortality. The main mechanisms of disease appear to be related to an increase in the pathogenic processes associated with atherosclerosis. People exercising in environments pervaded by air contaminants are probably at increased risk, due to an exercise-induced amplification in respiratory uptake, lung deposition and toxicity of inhaled pollutants. We make evidence-based recommendations for minimizing exposure to air-borne toxins while exercising, and suggest that this advice be passed on to patients where appropriate.
Resumo:
Background: Brachial artery reactivity (BAR), carotid intima-media thickness (IMT), and applanation tonometry for evaluation of total arterial compliance may provide information about preclinical vascular disease. We sought to determine whether these tests could be used to identify patients with coronary artery disease (CAD) without being influenced by their ability to identify those at risk ford CAD developing. Methods: We studied 100 patients and compared 3 groups: 35 patients with known CAD; 34 patients with symptoms and risk factors but no CAD identified by stress echocardiography (risk group); and 31 control subjects. BAR and IMT were measured using standard methods, and total arterial compliance was calculated by the pulse-pressure method from simultaneous radial applanation tonometry and pulsed wave Doppler of the left ventricular outflow. Ischemia was identified as a new or worsening wall-motion abnormality induced by stress. Results: In a comparison between the control subjects and patients either at risk for developing CAD or with CAD, the predictors of risk for CAD were: age (P = .01); smoking history (P = .002); hypercholesterolemia (P = .002); and hypertension (P = .004) (model R = 0.82; P = .0001). The independent predictors of CAD were: IMT (P = .001); BAR (P = .04); sex (P = .005); and hypertension (P = .005) (model R = 0.80; P = .0001). Conclusion: IMT, BAR, and traditional cardiovascular risk factors appear to identify patients at risk for CAD developing. However, only IMT was significantly different between patients at risk for developing CAD and those with overt CAD.
Resumo:
Background Diastolic heart failure (DHF) is characterized by dyspnea due to increased left ventricular (LV) filling pressures during stress. We sought the relationship of exercise-induced increases in B-type natriuretic peptide (BNP) to LV filling pressures and parameters of cardiovascular performance in suspected DHF. Methods Twenty-six treated hypertensive patients with suspected DHF (exertional dyspnea, LV ejection fraction >50%, and diastolic dysfunction) underwent maximal exercise echocardiography using the Bruce protocol. BNP, transmitral Doppler, and tissue Doppler for systolic (So) and early (Ea) and late (Aa) diastolic mitral annular velocities were obtained at rest and peak stress. LV filling pressures were estimated with E/Ea ratios. Results Resting BNP correlated with resting pulse pressure (r=0.45, P=0.02). Maximal exercise performance (4.6 +/- 2.5min) was limited by dyspnea. Blood pressure increased with exercise (from 143 +/- 19/88 +/- 8 to 191 +/- 22/90 +/- 10 mm Hg); 13 patients (50%) had a hypertensive response. Peak exercise BNP correlated with peak transmitral E velocity (r = 0.41, P <.05) and peak heart rate (r = -0.40, P <.05). BNP increased with exercise (from 48 57 to 74 97 pg/mL, P =.007), and the increment of BNP with exercise was associated with maximal workload and peak exercise So, Ea, and Aa (P <.01 for all). Filling pressures, approximated by lateral E/Ea ratio, increased with exercise (7.7 +/- 2.0 to 10.0 +/- 4.8, P <.01). BNP was higher in patients with possibly elevated filling pressures at peak exercise (E/Ea >10) compared to those with normal pressures (123 +/- 124 vs 45 +/- 71 pg/mL, P =.027). Conclusions Augmentation of BNP with exercise in hypertensive patients with suspected DHF is associated with better exercise capacity, LV systolic and diastolic function, and left atrial function. Peak exercise BNP levels may identify exercise-induced elevation of filling pressures in DHF.
Resumo:
Background Brachial blood pressure predicts cardiovascular outcome at rest and during exercise. However, because of pulse pressure amplification, there is a marked difference between brachial pressure and central (aortic) pressure. Although central pressure is likely to have greater clinical importance, very little data exist regarding the central haemodynamic response to exercise. The aim of the present study was to determine the central and peripheral haemodynamic response to incremental aerobic exercise. Materials and methods Twelve healthy men aged 31 +/- 1 years (mean +/- SEM) exercised at 50%, 60%, 70% and 80% of their maximal heart rate (HRmax) on a bicycle ergometer. Central blood pressure and estimated aortic pulse wave velocity, assessed by timing of the reflected wave (T-R), were obtained noninvasively using pulse wave analysis. Pulse pressure amplification was defined as the ratio of peripheral to central pulse pressure and, to assess the influence of wave reflection on amplification, the ratio of peripheral pulse pressure to nonaugmented central pulse pressure (PPP : CDBP-P-1) was also calculated. Results During exercise, there was a significant, intensity-related, increase in mean arterial pressure and heart rate (P < 0.001). There was also a significant increase in pulse pressure amplification and in PPP : CDBP-P-1 (P < 0.001), but both were independent of exercise intensity. Estimated aortic pulse wave velocity increased during exercise (P < 0.001), indicating increased aortic stiffness. There was also a positive association between aortic pulse wave velocity and mean arterial pressure (r = 0.54; P < 0.001). Conclusions Exercise significantly increases pulse pressure amplification and estimated aortic stiffness.
Resumo:
The metabolic syndrome (MS) is associated with cardiovascular risk exceeding that expected from atherosclerotic risk factors, but the mechanism of this association is unclear. We sought to determine the effects of the MS on myocardial and vascular function and cardiorespiratory fitness in 393 subjects with significant risk factors but no cardiovascular disease and negative stress echocardiographic findings. Myocardial function was assessed by global strain rate, strain, and regional systolic velocity (s(m)) and diastolic velocity (e(m)) using tissue Doppler imaging. Arterial compliance was assessed using the pulse pressure method, involving simultaneous radial applanation tonometry and echocardiographic measurement of stroke volume. Exercise capacity was measured by expired gas analysis. Significant and incremental variations in left ventricular systolic (s(m), global strain, and strain rate) and diastolic (e(m)) function were found according to the number of components of MS (p <0.001). MS contributed to reduced systolic and diastolic function even in those without left ventricular hypertrophy (p <0.01). A similar dose-response association was present between the number of components of the MS and exercise capacity (p <0.001) and arterial compliance. The global strain rate and em were independent predictors of exercise capacity. In conclusion, subclinical left ventricular dysfunction corresponded to the degree of metabolic burden, and these myocardial changes were associated with reduced cardiorespiratory fitness.' Subjects with MS who also have subclinical myocardial abnormalities and reduced cardiorespiratory fitness may have a higher risk of cardiovascular disease events and heart failure. (C) 2005 Elsevier Inc. All rights reserved.
Resumo:
Objective: To seek an association between total arterial compliance (TAC) and the extent of ischaemia at stress echocardiography. Design: Cohort study. Setting: Regional cardiac centre. Methods: 255 consecutive patients (147 men; mean (SD) age 58 (8)) presenting for stress echocardiography for clinical indications were studied. Wall motion score index (WMSI) was calculated and ischaemia was defined by an inducible or worsening wall motion abnormality. Peak WMSI was used to reflect the extent of dysfunction (ischaemia or scar), and Delta WMSI was indicative of extent of ischaemia. TAC was assessed at rest by simultaneous radial applanation tonometry and pulsed wave Doppler in all patients. Results: Ischaemia was identified by stress echocardiography in 65 patients (25%). TAC was similar in the groups with negative and positive echocardiograms (1.08 (0.41) v 1.17 (0.51) ml/ mm Hg, not significant). However, the extent of dysfunction was associated with TAC independently of age, blood pressure, risk factors, and use of a beta blocker. Moreover, the extent of ischaemia was determined by TAC, risk factors, and use of a b blocker. Conclusion: While traditional cardiovascular risk factors are strong predictors of ischaemia on stress echocardiography, TAC is an independent predictor of the extent of ischaemia.