50 resultados para Pompey, the Great, 106 B.C.-48 B.C.
Resumo:
For the managers of a region as large as the Great Barrier Reef, it is a challenge to develop a cost effective monitoring program, with appropriate temporal and spatial resolution to detect changes in water quality. The current study compares water quality data (phytoplankton abundance and water clarity) from remote sensing with field sampling (continuous underway profiles of water quality and fixed site sampling) at different spatial scales in the Great Barrier Reef north of Mackay (20 degrees S). Five transects (20-30 km long) were conducted from clean oceanic water to the turbid waters adjacent to the mainland. The different data sources demonstrated high correlations when compared on a similar spatial scale (18 fixed sites). However, each data source also contributed unique information that could not be obtained by the other techniques. A combination of remote sensing, underway sampling and fixed stations will deliver the best spatial and temporal monitoring of water quality in the Great Barrier Reef. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The structure constants of quantum Lie algebras depend on a quantum deformation parameter q and they reduce to the classical structure constants of a Lie algebra at q = 1. We explain the relationship between the structure constants of quantum Lie algebras and quantum Clebsch-Gordan coefficients for adjoint x adjoint --> adjoint We present a practical method for the determination of these quantum Clebsch-Gordan coefficients and are thus able to give explicit expressions for the structure constants of the quantum Lie algebras associated to the classical Lie algebras B-l, C-l and D-l. In the quantum case the structure constants of the Cartan subalgebra are non-zero and we observe that they are determined in terms of the simple quantum roots. We introduce an invariant Killing form on the quantum Lie algebras and find that it takes values which are simple q-deformations of the classical ones.
Resumo:
The tetraphyllidean metacestode diversity of 310 teleost fishes, including 87 species from 31 families, was examined from Heron Island, The Great Barrier Reef, Australia. Eleven metacestode 'types' were identified with the use of light microscopy. Host-specificity varied greatly among metacestode types. Incorporation of in vitro cultivation allowed generic identification for some types. Types 1 and 2 belong to Uncibilocularis Southwell, 1925, and have triloculate bothridia and one pair of Forked hooks with unequal prongs; Type 3 has quadriloculate bothridia. Hook development was insufficient to determine in which genus, Acanthobothrium van Beneden, 1849 or Calliobothrium van Beneden, 1850, this type may belong. Type 4 has unilocular bothridia with simple edges and belongs to Anthobothrium van Beneden, 1850. Type 5 has multiloculated bothridia which are invaginated within pouches. This type belongs to the Rhinebothriinae although its generic identity cannot be determined. The bothridia of Type 5 everted within 24 hours of in vitro cultivation and revealed the presence of two forms, one having 48 loculi per bothridium, the other 72 per bothridium. In vitro studies provide additional support for existing theories of onchobothriid scolex development.
Resumo:
T cell cytokine profiles and specific serum antibody levels in five groups of BALB/c mice immunized with saline alone, viable Fusobacterium nucleatum ATCC 25586, viable Porphyromonas gingivalis ATCC 33277, F. nucleatum followed by P. gingivalis and P. gingivalis followed by F nucleatum were determined. Splenic CD4 and CD8 cells were examined for intracytoplasmic interleukin (IL)-4, interferon (IFN)-gamma and IL-10 by dual colour flow cytometry and the levels of serum anti-F. nucleatum and anti-P. gingivalis antibodies determined by an ELISA. Both Th1 and Th2 responses were demonstrated by all groups, and while there were slightly lower percentages of cytokine positive T cells in mice injected with F. nucleatum alone compared with the other groups immunized with bacteria., F nucleatum had no effect on the T cell production of cytokines induced by P gingivalis in the two groups immunized with both organisms. However, the percentages of cytokine positive CD8 cells were generally significantly higher than those of the CD4 cells. Mice immunized with F nucleatum alone had high levels of serum anti-E nucleatum antibodies with very low levels of P. gingivalis antibodies, whereas mice injected with P gingivalis alone produced anti-P. gingivalis antibodies predominantly. Although the levels of anti-E nucleatum antibodies in mice injected with E nucleatum followed by P. gingivalis were the same as in mice immunized with F nucleatum alone, antibody levels to P. gingivalis were very low. In contrast, mice injected with P. gingivalis followed by F nucleatum produced equal levels of both anti-P. gingivalis and anti-F nucleatum antibodies, although at lower levels than the other three groups immunized with bacteria, respectively. Anti-Actinobacillus actitiomycetemcomitans, Bacteroides forsythus and Prevotella intermedia serum antibody levels were also determined and found to be negligible. In conclusion, F nucleatum immunization does not affect the splenic T cell cytokine response to P. gingivalis. However, F nucleatum immunization prior to that of P. gingivalis almost completely inhibited the production of anti-P gingivalis antibodies while P. gingivalis injection before F. nucleatum demonstrated a partial inhibitory effect by P. gingivalis on antibody production to F. nucleatum. The significance of these results with respect to human periodontal disease is difficult to determine. However, they may explain in part differing responses to P. gingivalis in different individuals who may or may not have had prior exposure to F. nucleatum. Finally, the results suggested that P. gingivalis and F. nucleatum do not induce the production of cross-reactive antibodies to other oral microorganisms.
Resumo:
Marine plants colonise several interconnected ecosystems in the Great Barrier Reef region including tidal wetlands, seagrass meadows and coral reefs. Water quality in some coastal areas is declining from human activities. Losses of mangrove and other tidal wetland communities are mostly the result of reclamation for coastal development of estuaries, e.g. for residential use, port infrastructure or marina development, and result in river bank destabilisation, deterioration of water clarity and loss of key coastal marine habitat. Coastal seagrass meadows are characterized by small ephemeral species. They are disturbed by increased turbidity after extreme flood events, but generally recover. There is no evidence of an overall seagrass decline or expansion. High nutrient and substrate availability and low grazing pressure on nearshore reefs have lead to changed benthic communities with high macroalgal abundance. Conservation and management of GBR macrophytes and their ecosystems is hampered by scarce ecological knowledge across macrophyte community types. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Land use intensification is estimated to result in an overall increase in sediment delivery to the Great Barrier Reef lagoon by a factor of approximately four. Modelling suggests that, following land use intensification, croplands cause the greatest increase of sediment yield and sediment concentration, whereas erosion of grazing land is the main contemporary source of sediments, primarily owing to the large spatial extent of this land use. The spatial pattern of sediment yield to the coast after land use intensification is strongly correlated with the pattern under natural conditions, although the greatest increase is estimated to have occurred in the wet-dry catchments. Sediment transport and resuspension processes have led to the development of a strongly sediment-partitioned shelf, with modern mud-rich sediments almost exclusively restricted to the inner and inner-middle shelf, northward-facing embayments and in the lee of headlands. Elevated sediment concentrations increase the potential transport rates of nutrients and other pollutants. Whether increased sediment supply to the coastal zone has impacted on reefs remains a point of contention. More sediment load data need to be collected and analysed in order to make detailed estimates of catchment yields and establish the possible sediment impact on the Great Barrier Reef.
Resumo:
In this study the first measurements of DMSP in six species of corals and ten species of benthic algae collected from four coral reefs in the Great Barrier Reef are reported, together with DMSP measurements made on cultured zooxanthellae. Concentrations ranged from 21 to 3831 (mean=743) fmol DMSP zooxanthellae(-1) in corals, 0.16 to 2.96 nmol DMSP cm(-2) (mean=90) for benthic macroalgae, and 48-285 fmol DMSP zooxanthellae(-1) (mean=153) for cultured zooxanthellae. The highest concentrations of DMSP in corals occurred in Acropora formosa (mean= 371 fmol DMSP zooxanthellae(-1)) and Acropora palifera (mean=3341 fmol DMSP zooxanthellae(-1)) with concentrations in A. palifera the highest DMSP concentrations reported in corals examined to date. As well as inter-specific differences in DMSP, intra-specific variation was also observed. Adjacent colonies of A. formosa that are known to have different thermal bleaching thresholds and morphologically distinct zooxanthellae, were also observed to have different DMSP concentrations, with the zooxanthellae in the colony that bleached containing DMSP at an average concentration of 436 finol zooxanthellae(-1), whilst the non-bleaching colony contained DMSP at an average concentration of 171 finol zooxanthellae(-1). The results of the present study have been used to calculate the area normalized DMSP concentrations in benthic algae (mean=0.015 mmol m(-2)) and corals (mean=2.22 mmol m(-2)) from the GBR. This data indicates that benthic algae and corals are a significant reservoir of DMSP in GBR waters. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
Re-Os data for chromite separates from 10 massive chromitite seams sampled along the 550-km length of the 2.58-Ga Great Dyke layered igneous complex, Zimbabwe, record initial 187Os/188Os ratios in the relatively narrow range between 0.1106 and 0.1126. This range of initial 187Os/188Os values is only slightly higher than the value for the coeval primitive upper mantle (0.1107) as modeled from the Re-Os evolution of chondrites and data of modern mantle melts and mantle derived xenoliths. Analyses of Archean granitoid and gneiss samples from the Zimbabwe Craton show extremely low Os concentrations (3-9 ppt) with surprisingly unradiogenic present-day 187Os/188Os signatures between 0.167 and 0.297. Only one sample yields an elevated 187Os/188Os ratio of 1.008. Using these data, the range of crustal contamination of the Great Dyke magma would be minimally 0%-33% if the magma source was the primitive upper mantle, whereas the range estimated from Nd and Pb isotope systematics is 5%-25%. If it is assumed that the primary Great Dyke magma derived from an enriched deep mantle reservoir (via a plume), a better agreement can be obtained. A significant contribution from a long-lived subcontinental lithospheric mantle (SCLM) reservoir with subchondritic Re/Os to the Great Dyke melts cannot be reconciled with the Os isotope results at all. However, Os isotope data on pre-Great Dyke ultramafic complexes of the Zimbabwe Craton and thermal modeling show that such an SCLM existed below the Zimbabwe Craton at the time of the Great Dyke intrusion. It is therefore concluded that large melt volumes such as that giving rise to the Great Dyke were able to pass lithospheric mantle keels without significant contamination in the late Archean. Because the ultramafic-mafic melts forming the Great Dyke must have originated below the SCLM (which extends to at least a 200-km depth ), the absence of an SCLM signature precludes a subduction-related magma-generation process.
Resumo:
The Great Barrier Reef Marine Park, an area almost the size , of Japan, has a new network of no-take areas that significantly improves the protection of biodiversity. The new marine park zoning implements, in a quantitative manner, many of the theoretical design principles discussed in the literature. For example, the new network of no-take areas has at least 20% protection per bioregion, minimum levels of protection for all known habitats and special or unique features, and minimum sizes for no-take areas of at least 10 or 20 kat across at the smallest diameter Overall, more than 33% of the Great Barrier Reef Marine Park is now in no-take areas (previously 4.5%). The steps taken leading to this outcome were to clarify to the interested public why the existing level of protection wets inadequate; detail the conservation objectives of establishing new no-take areas; work with relevant and independent experts to define, and contribute to, the best scientific process to deliver on the objectives; describe the biodiversity (e.g., map bioregions); define operational principles needed to achieve the objectives; invite community input on all of The above; gather and layer the data gathered in round-table discussions; report the degree of achievement of principles for various options of no-take areas; and determine how to address negative impacts. Some of the key success factors in this case have global relevance and include focusing initial communication on the problem to be addressed; applying the precautionary principle; using independent experts; facilitating input to decision making; conducting extensive and participatory consultation; having an existing marine park that encompassed much of the ecosystem; having legislative power under federal law; developing high-level support; ensuring agency Priority and ownership; and being able to address the issue of displaced fishers.