26 resultados para Polyethylene Glycol


Relevância:

60.00% 60.00%

Publicador:

Resumo:

As a response to recent expression of concern about possible unreliability of vapor pressure deficit measurements K Kiyosawa, Biophys. Chem. 104 (2003) 171-188), the results of published studies on the temperature dependence of the osmotic pressure of aqueous polyethylene glycol solutions are shown to account for the observed discrepancies between osmolality estimates obtained by freezing point depression and vapor pressure deficit osmometry - the cause of the concern. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated whether the protection from graft-versus-host disease (GVHD) afforded by donor treatment with granulocyte colony-stimulating factor (G-CSF) could be enhanced by dose escalation. Donor treatment with human G-CSIF prevented GVHD in the B6 --> B6D2F1 murine model in a dose-dependent fashion, and murine G-CSF provided equivalent protection from GVHD at 10-fold lower doses. Donor pretreatment with a single dose of pegylated G-CSF (peg-G-CSF) prevented GVHD to a significantly greater extent than standard G-CSIF (survival, 75% versus 11%, P < .001). Donor T cells from peg-G-CSF-treated donors failed to proliferate to alloantigen and inhibited the responses of control T cells in an interleukin 10 (IL-10)-dependent-fashion in vitro. T cells from peg-GCSF-treated IL-10(-/-) donors induced lethal GVHD; T cells from peg-G-CSF-treated wild-type (wt) donors promoted long-term survival. Whereas T cells from peg-G-CSF wt donors were able to regulate GVHD induced by T cells from control-treated donors, T cells from G-CSF-treated wt donors and peg-G-CSF-treated IL-10(-/-) donors did not prevent mortality. Thus, peg-G-CSF is markedly superior to standard G-CSF for the prevention of GVHD following allogeneic stem cell transplantation (SCT), due to the generation of IL-10-producing regulatory T cells. These data support prospective clinical trials of peg-G-CSF-mobilized allogeneic blood SCT. (C) 2004 by The American Society of Hematology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Of those explants tested, immature zygotic embryo tissues proved to be the best for initiating callus with potential for somatic embryogenesis. Slicing of this tissue and use of the central sections (near to and including the meristematic tissue) gave the best embryogenic response. Slices that were placed under illumination necrosed more rapidly and to a greater degree than those incubated in the dark. Explant slice necrosis could be prevented or severely retarded by the addition of activated charcoal into the medium. Washing the explants for short periods of time prior to culture was also found to improve callus production. Prolonged washing resulted in low rates of callus production. In an attempt to prevent ethylene accumulation in the culture vessel headspace, AVG, an ethylene biosynthesis inhibitor and STS, a chemical which reduces the physiological action of ethylene, were successfully used to promote somatic embryogenesis. Spermidine, putrescine and spermine, polyamines that are known to delay plant senescence and promote somatic embryogenesis in some plant species, enhanced the rate of somatic embryogenesis when they were introduced into the callus induction medium. The use of polyethylene glycol in combination with abscisic acid helped promote somatic embryo formation and maturation as well as the subsequent formation of plantlets. The use of all of these improvements together has created a new and improved protocol for coconut somatic embryogenesis. This new protocol puts significant emphasis on improving the in vitro ecology of the explant, callus and somatic embryogenic tissues.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Measurement of protein-polymer second virial coefficients (B-AP) by sedimentation equilibrium studies of carbonic anhydrase and cytochrome c in the presence of dextrans (T10-T80) has revealed an inverse dependence of B-AP upon dextran molecular mass that conforms well with the behaviour predicted for the excluded-volume interaction between a spherical protein solute A and a random-flight representation of the polymeric cosolute P. That model of the protein-polymer interaction is also shown to provide a reasonable description of published gel chromatographic and equilibrium dialysis data on the effect of polymer molecular mass on BAP for human serum albumin in the presence of polyethylene glycols, a contrary finding from analysis of albumin solubility measurements being rejected on theoretical grounds. Inverse dependence upon polymer chainlength is also the predicted excluded-volume effect on the strength of several types of macromolecular equilibria-protein isomerization, protein dimerization, and 1 : 1 complex formation between dissimilar protein reactants. It is therefore concluded that published experimental observations of the reverse dependence, preferential reaction enhancement within DNA replication complexes by larger polyethylene glycols, must reflect the consequences of cosolute chemical interactions that outweigh those of thermodynamic nonideality arising from excluded-volume effects. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The PEG-Ficoll polymer phase system is one that has been overlooked in the past for biotechnology applications because of the stability of its emulsions. However, new applications, such as emulsion coating of cells, are appearing that rely on this very property. Ficoll is highly polydisperse and multimodal with three distinct Ficoll peaks in gel permeation chromatography. As a result, the transition between one-phase and two-phase systems is blurred and the binodials obtained through turbidometric titration and tie-line analysis differ significantly. Moreover, since the three Ficoll peaks partition differently, tie-line analysis cannot be described by a simple model of the aqueous two-phase system. A simple modification to the model allowed for excellent fit, and this modification may prove well-suited for the many practical cases where aqueous two-phase systems fail to display parallel tie-lines as implicitly assumed in the simpler model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The yield behaviour of a series of melt-mixed polyethylene-modified montmorillonite nanocomposites has been studied as a function of temperature and strain rate and compared to the behaviour of the base polymer. The processing conditions used gave an intercalated structure as assessed by X-ray diffraction. Although there was a modest improvement in stiffness with clay content, the yield behaviour was insensitive to the addition of the clay. Both the base polymer and the nanocomposites showed double yield points. These were analysed as activated rate processes, with the activation energies consistent with the low strain yield point being associated with the alpha(2) molecular relaxation and the higher strain yield point with W axis slip. (C) 2003 Society of Chemical Industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Corrosion of magnesium engine components by coolant is an important issue in the automotive industry where magnesium alloys may be used. It is of significance to understand the corrosion behaviour of pure magnesium in ethylene glycol solutions, as this can provide a basis for developing new coolants for magnesium alloy engine blocks. In this paper, through corrosion and electrochemical tests, it was found that the corrosion rate of magnesium decreased with increasing concentration of ethylene glycol. Individual contaminants, such as NaCl, NaHCO3, Na2SO4 and NaCl can make aqueous ethylene glycol solution more corrosive to magnesium. However, in NaCl contaminated ethylene glycol, NaHCO3 and Na2SO4 showed some inhibition effect. The solution resistivity played an important role in the corrosion of magnesium in ethylene glycol solutions, and the competitive adsorption of ethylene glycol and the contaminants on the magnesium surface was also responsible for the observed corrosion behaviours. The corrosion of magnesium in ethylene glycol can be effectively inhibited by addition of fluorides that react with magnesium and form a protective film on the surface. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermosetting blends of a biodegradable poly(ethylene glycol)-type epoxy resin (PEG-ER) and poly(epsilon-caprolactone) (PCL) were prepared via an in situ curing reaction of poly(ethylene glycol) diglycidyl ether (PEGDGE) and maleic anhydride (MAH) in the presence of PCL. The miscibility, phase behavior, crystallization, and morphology of these blends were investigated. The uncured PCL/PEGDGE blends were miscible, mainly because of the entropic contribution, as the molecular weight of PEGDGE was very low. The crystallization and melting behavior of both PCL and the poly(ethylene glycol) (PEG) segment of PEGDGE were less affected in the uncured PCL/PEGDGE blends because of the very close glass-transition temperatures of PCL and PEGDGE. However, the cured PCL/PEG-ER blends were immiscible and exhibited two separate glass transitions, as revealed by differential scanning calorimetry and dynamic mechanical analysis. There existed two phases in the cured PCL/PEG-ER blends, that is, a PCL-rich phase and a PEG-ER crosslinked phase composed of an MAH-cured PEGDGE network. The crystallization of PCL was slightly enhanced in the cured blends because of the phase-separated nature; meanwhile, the PEG segment was highly restricted in the crosslinked network and was noncrystallizable in the cured blends. The phase structure and morphology of the cured PCL/PEG-ER blends were examined with scanning electron microscopy; a variety of phase morphologies were observed that depended on the blend composition. (C) 2004 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective. To compare the efficacy of two forms of eye care (hypromellose and Lacri-Lube combination vs polyethylene/Cling wrap covers) for intensive care patients. Design. Randomised-controlled trial. Setting. University affiliated, tertiary referral hospital. Patients and participants. One hundred ten patients with a reduced or absent blink reflex were followed through until they regained consciousness, were discharged from the facility during study enrolment, died or developed a positive corneal ulcer or eye infection. Interventions. All patients received standard eye cleansing every 2 h. In addition to this, group one (n=60) received a treatment combining hypromellose drops and Lacri-Lube (HL) to each eye every 2 h. Group two (n=50) had polyethylene covers only placed over the eye to create a moisture chamber. Measurements and results. Corneal ulceration was determined using corneal fluorescein stains and mobile slit lamp evaluation, performed daily. No patients had corneal ulceration in the polyethylene cover group, but 4 patients had corneal ulceration in the HL group. Conclusions. Polyethylene covers are as effective as HL in reducing the incidence of corneal damage in intensive care patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyethylene (PE) multiwalled carbon nanotubes (MWCNTs) with weight fractions ranging from 0.1 to 10 wt% were prepared by melt blending using a mini-twin screw extruder. The morphology and degree of dispersion of the MWCNTs in the PE matrix at different length scales was investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) and wide-angle X-ray diffraction (WAXD). Both individual and agglomerations of MWCNTs were evident. An up-shift of 17 cm(-1) for the G band and the evolution of a shoulder to this peak were obtained in the Raman spectra of the nanocomposites, probably due to compressive forces exerted on the MWCNTs by PE chains and indicating intercalation of PE into the MWCNT bundles. The electrical conductivity and linear viscoelastic behaviour of these nanocomposites were investigated. A percolation threshold of about 7.5 wt% was obtained and the electrical conductivity of PE was increased significantly, by 16 orders of magnitude, from 10(-20) to 10(-4) S/cm. The storage modulus (G') versus frequency curves approached a plateau above the percolation threshold with the formation of an interconnected nanotube structure, indicative of 'pseudo-solid-like' behaviour. The ultimate tensile strength and elongation at break of the nanocomposites decreased with addition of MWCNTs. The diminution of mechanical proper-ties of the nanocomposites, though concomitant with a significant increase in electrical conductivity, implies the mechanism for mechanical reinforcement for PE/MWCNT composites is filler-matrix interfacial interactions and not filler percolation. The temperature of crystallisation (T.) and fraction of PE that was crystalline (F-c) were modified by incorporating MWCNTs. The thermal decomposition temperature of PE was enhanced by 20 K on addition of 10 wt% MWCNT. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The yield behavior of melt-mixed nanocomposites containing 5 wt % organically modified montmorillonite in matrices of a linear low-density polyethylene (LLDPE) or a modified polyethylene was studied as a function of the temperature. and strain rate. In the melt-mixed LLDPE nanocomposite, the montmorillonite showed a slight increase in the clay spacing, which suggested that the clay was at best intercalated. Transmission electron microscopy (TEM) images showed that the dispersion in this nanocomposite was poor. The use of the modified polyethylene promoted exfoliation of the clay tactoids in the nanocomposite, as assessed by X-ray diffraction and TEM. In both nanocomposites, the yield mechanisms were insensitive to the addition of the organoclay, even though modest increases in the modulus were produced. (c) 2006 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyethylene-based passive air samplers (PSDs) were loaded with performance reference compounds (PRCs) and deployed in a wind tunnel to examine the effects of wind speed on sampler performance. PRCs could be loaded reproducibly into PSDs, with coefficients of variation only exceeding 20% for the more volatile compounds. When PSDs were exposed to low (0.5-1.5 m s(-1)) and high (3.5-4.5 m s(-1)) wind speeds, PRC loss rate constants generally increased with increasing wind speed and decreased with increasing sampler/air partition coefficients. PSD-based air concentrations calculated using PRC loss rate constants and sampler/air partition coefficients and air concentrations measured using active samplers compared closely. PRCs can be used to account for the effect of differences in wind speeds on sampler performance and measure air concentrations with reasonable accuracy. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal degradation of high density polyethylene has been modelled by the random breakage of polymer bonds, using a set of population balance equations. A model was proposed in which the population balances were lumped into representative sizes so that the experimentally determined molecular weight distribution of the original polymer could be used as the initial condition. This model was then compared to two different cases of the unlumped population balance which assumed unimolecular initial distributions of 100 and 500 monomer units, respectively. The model that utilised the experimentally determined molecular weight distribution was found to best describe the experimental data. The model fits suggested a second mechanism in addition to random breakage at slow reaction rates. (c) 2005 Elsevier Ltd. All rights reserved.