85 resultados para Polychlorinated dibenzo-p-dioxins
Resumo:
Concentrations of 2,3,7,8-substituted polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) were determined in 14 sediment samples collected from four sites in the Mai Po Marshes Nature Reserve (within a RAMSAR Site) and from another six sites in Victoria Harbour and along the Hong Kong coastline. Elevated levels of PCDDs, and particularly OCDD, were detectable in all samples collected from the Mai Po Marshes and five of the six sites. In contrast to PCDDs, PCDFs were mainly found in sediment samples collected from industrial areas (Kwun Tong and To Kwa Wan) in Victoria Harbour. PCDD/F levels and congener profiles in the samples from the Mai Po Marshes Nature Reserve in particular show strong similarities to those reported in studies which have attributed similar elevated PCDD concentrations to nonanthropogenic PCDD sources. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
In recent years, studies on environmental samples with unusual dibenzo-p-dioxin (PCDD) congener profiles were reported from a range of countries. These profiles, characterized by a dominance of octachlorinated dibenzodioxin (OCDD) and relatively low in dibenzofuran (PCDF) concentrations, could not be attributed to known sources or formation processes. In the present study, the processes that result in these unusual profiles were assessed using the concentrations and isomer signatures of PCDDs from dated estuarine sediment cores in Queensland, Australia. Increases in relative concentrations of lower chlorinated PODS and a relative decrease of OCDD were correlated with time of sediment deposition. Preferred lateral, anaerobic dechlorination of OCDD represents a likely pathway for these changes. In Queensland sediments, these transformations result in a distinct dominance of isomers fully chlorinated in the 1,4,6,9-positions (1,4-patterns), and similar 1,4-patterns were observed in sediments from elsewhere. Consequently, these environmental samples may not reflect the signatures of the original source, and a reevaluation of source inputs was undertaken. Natural formation of PCDDs, which has previously been suggested, is discussed; however, based on the present results and literature comparisons, we propose an alternative scenario. This scenario hypothesizes that an anthropogenic PCDD precursor input (e.g. pentachlorophenol) results in the contamination. These results and hypothesis imply further investigations are warrented into possible anthropogenic sources in areas where natural PCDD formation has been suggested.
Resumo:
Nine samples of butter from producers in various states of Australia were analysed for polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). Detectable concentrations of 2,3,7,8-chlorine substituted PCDD/Fs were found in all samples. The mean PCDD/F concentration expressed as 2',3,7,8-TCDD equivalents (TEQs) was 0.19 pg TEQ g(-1) fat. The highest concentration (0.46 pg TEQ g(-1) fat) was observable in a sample from Victoria which is the most densely populated state. Overall the results indicate that PCDD/F concentrations in dairy products from Australia are low in comparison to the levels in dairy products of industrialized countries on the Northern Hemisphere. As expected, this study provides evidence that the environmental and consequently the human body burden of PCDD/ Fs to be relatively low in Australia.
Resumo:
Recent investigations have demonstrated the presence of an unidentified source of polychlorinated dibenzo-p-dioxins (PCDDs) in the coastal zone of Queensland (Australia). The present study provides new information on the possible PCDD sources and their temporal input to this environment. Two estuarine sediment cores were collected in northern Queensland for which radiochemical chronologies were established. Core sections from different depositional ages, up to three centuries, have been analyzed for 2,3,7,8-substituted PCDDs and polychlorinated dibenzofurans (PCDFs). Variations of PCDD concentrations in the sediment cores over several centuries of depositional history were relatively small, and elevated PCDD levels were still present in sediment slices from the early 17th century. PCDD/F isomer patterns and congener profiles in sediments deposited during the last 350 years were almost identical and correlated well to the characteristic profiles observed in surface sediments and soils from the entire Queensland coastline. Profiles were dominated by higher chlorinated PCDDs, in particular octachlorodibenzodioxin (OCDD), whereas PCDF concentrations were below or near the limit of detection. These results indicate the presence of a PCDD source prior to industrialization and production of commercial organochlorine products. Further, the present study demonstrates that PCDD input patterns have been similar along an extensive but localized area over at least several centuries, contributing relatively high concentrations of PCDDs to the coastal system of Queensland.
Resumo:
Recent findings of elevated PCDDs from an unknown source in the coastal marine environment of Queensland, Australia has instigated further investigations into the distribution of, and environments associated with the PCDD contamination. This study presents data for OCDD concentrations in the coastal, mountainous and inland environment of Queensland. Additionally, full 2,3,7,8-substituted polychlorinated dibenzo-p-dioxins and dibenzofuran (PCDD/F) profiles from different land-use types and environments in the coastal region were analysed. Distinct east-west gradients were detected in topsoil collected from various bushland regions with elevated OCDD concentrations confined to the coastal region. However, PCDD/F results from topsoil and river sediments collected in the Queensland coastal region suggest that elevated OCDD concentrations cannot be attributed to any of the environments, land-use or industry types investigated. PCDD/F congener profiles from select samples were remarkably similar to those previously described in marine sediments collected along the entire Queensland coastline. In addition, kaolinite clay samples from Queensland exhibited elevated OCDD concentrations, and PCDD/F profiles in these samples were similar to those detected in kaolinite clays elsewhere. Natural formation processes have been hypothesised as the source of elevated PCDDs in Queensland and other locations, where similar PCDD/F profiles and the general lack of anthropogenic sources are evident. This study presents additional data supporting this hypothesis and provides further information that may assist in the identification of the processes involved in the natural formation of PCDDs. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Forest fires are suggested as a potential and significant source of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs), even though no studies to date provide sufficient evidence to confirm forest fires as a source of PCDD/Fs. Recent investigations in Gueensland, Australia have identified a widespread contamination of PCDDs (in particular OND) in soils and sediments in the coastal region from an unknown source of PCDD/Fs. Queensland is predominately rural; it has few known anthropogenic sources of PCDD/Fs, whereas forest fires are a frequent occurrence. This study was conducted to assess forest fires as a potential source of the unknown PCDD/F contamination in Queensland. A combustion experiment was designed to assess the overall mass of PCDD/Fs before and after a simulated forest fire. The results from this study did not identify an increase in Sigma-PCDD/Fs or OCDD after the combustion process. However, specific non-2,3,7,8 substituted lower chlorinated PCDD/Fs were elevated after the combustion process, suggesting formation from a precursor. The results from this study indicate that forest fires are unlikely to be the source of the unknown PCDD contamination in Gueensland, rather they are a key mechanism for the redistribution of PCDD/Fs from existing sources and precursors.
Resumo:
Polychlorinated dibenzo-p-dioxin (PCDD) and dibenzofuran (PCDF) concentrations were measured in sediment and seagrass from five locations in or adjacent to the Great Barrier Reef Marine Park. A full spectrum of Cl(5-8)DDs were present in all samples and, in particular, elevated levels of Cl8DD were found. PCDFs could not be quantified in any samples. The PCDD concentrations ranged over two orders of magnitude between sites, and there was a good correlation between sediment and seagrass levels. There were large quantities of sediment present on the seagrass (20-62% on a dry wt. basis), and it was concluded that this was a primary source of the PCDDs in the seagrass samples. The PCDD levels in the seagrass samples were compared with the levels in the tissue of three dugongs stranded in the same region. The relative accumulation of the 2,3,7,8-substituted PCDD congeners in the dugongs decreased by over two orders of magnitude with increasing degree of chlorination. This was attributed to the reduced absorption of the higher chlorinated congeners in the digestive tract, a behaviour that has been observed in other mammals such as domestic cows. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Recent studies have demonstrated the occurrence of elevated levels of higher chlorinated PCDDs in the coastal environment of Queensland, Australia. This study presents new data for OCDD contamination and full PCDD/F profile analysis in the environment of Queensland. Marine sediments, irrigation drain sediments and topsoil were collected from sites that were expected to be influenced by specific land-use types. High OCDD concentrations were associated mainly with sediments collected near the mouth of rivers which drain into large catchments in the tropical and subtropical regions. Further, analysis of sediments from irrigation drains could be clearly differentiated on the basis of OCDD contamination, with high concentrations in samples from sugarcane drains collected from coastal regions, and low concentrations in drain sediments from drier inland cotton growing areas. PCDD/F congener-specific analysis demonstrated almost identical congener profiles in all samples collected along the coastline. This indicates the source to be widespread. Profiles were dominated by higher chlorinated PCDDs, in particular OCDD whereas 2,3,7,8-substituted PCDFs were below the limit of quantification in the majority of samples. The full PCDD/F profile analysis of samples strongly resemble those reported for lake sediments from Mississippi and kaolinite samples from Germany, Strong similarities to these samples with respect to congener profiles and isomer patterns may indicate the presence of a similar source and/or formation process that is yet unidentified. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Trace organic chemicals include a range of compounds which, due to a combination of their physico-chemical properties and toxicological implications, have been described as a serious threat to the biotic environment. A global treaty to regulate the manufacture and release of some of the most persistent trace chemicals has been promulgated and signed. The marine environment is an important sink for many trace chemicals, some of which accumulate in the marine food chain and in particular in marine mammals. With respect to the global distribution of trace organic chemicals, the levels of organohalogen compounds in the Southern Hemisphere are comparatively lower for a given environmental compartment and latitude compared to the Northern Hemisphere. A debate is currently evolving about the toxicity of alternative halogen substitutions such as bromine instead of chlorine and also of mixed halogen substitution. Recently a series of potentially natural bioaccumulative and persistent organohalogen chemicals have been found in marine mammals and turtles at levels in excess of those of anthropogenic trace organochlorines including PCBs and DDE. Little is known about the sources, behaviour and effects of natural trace organic chemicals. This manuscript presents an overview on the occurrence of trace organic chemicals in different compartments of the aquatic environment. Important knowledge gaps with regards to trace chemicals in the marine environment are presented. Crown Copyright (C) 2002 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
P-representation techniques, which have been very successful in quantum optics and in other fields, are also useful for general bosonic quantum-dynamical many-body calculations such as Bose-Einstein condensation. We introduce a representation called the gauge P representation, which greatly widens the range of tractable problems. Our treatment results in an infinite set of possible time evolution equations, depending on arbitrary gauge functions that can be optimized for a given quantum system. In some cases, previous methods can give erroneous results, due to the usual assumption of vanishing boundary conditions being invalid for those particular systems. Solutions are given to this boundary-term problem for all the cases where it is known to occur: two-photon absorption and the single-mode laser. We also provide some brief guidelines on how to apply the stochastic gauge method to other systems in general, quantify the freedom of choice in the resulting equations, and make a comparison to related recent developments.