33 resultados para Plant pathogen interactions
Resumo:
Interactions between the immature stages of Diadegma semiclausum, an endolarval parasitoid of Plutella xylostella, and the fungal entomopathogen Beauveria bassiana were investigated in the laboratory. Detrimental effects of B. bassiana on D. semiclausum cocoon production and adult parasitoid emergence increased with increasing pathogen concentration and some parasitoid larvae became infected by B. bassiana within hosts. The negative impact of B. bassiana on D. semiclausum cocoon production decreased as temporal separation between parasitism and pathogen exposure increased. Adult parasitoid emergence was significantly compromised by the highest rates of B. bassiana tested even when exposure of host larvae to the pathogen was delayed until one day before predicted parasitoid cocoon formation. Parasitoid pupae were infected by the pathogen in all B. bassiana treatments which did not preclude their development. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Plant resistance proteins (R proteins) recognize corresponding pathogen avirulence (Avr) proteins either indirectly through detection of changes in their host protein targets or through direct R-Avr protein interaction. Although indirect recognition imposes selection against Avr effector function, pathogen effector molecules recognized through direct interaction may overcome resistance through sequence diversification rather than loss of function. Here we show that the flax rust fungus AvrLS67 genes, whose products are recognized by the L5, L6, and L7 R proteins of flax, are highly diverse, with 12 sequence variants identified from six rust strains. Seven AvrL567 variants derived from Avr alleles induce necrotic responses when expressed in flax plants containing corresponding resistance genes (R genes), whereas five variants from avr alleles do not. Differences in recognition specificity between AvA567 variants and evidence for diversifying selection acting on these genes suggest they have been involved in a gene-specific arms race with the corresponding flax R genes. Yeast two-hybrid assays indicate that recognition is based on direct R-Avr protein interaction and recapitulate the interaction specificity observed in planta. Biochemical analysis of Escherichia coli-produced AvrL567 proteins shows that variants that escape recognition nevertheless maintain a conserved structure and stability, suggesting that the amino acid sequence differences directly affect the R-Avr protein interaction. We suggest that direct recognition associated with high genetic diversity at corresponding R and Avr gene loci represents an alternative outcome of plant-pathogen coevolution to indirect recognition associated with simple balanced polymorphisms for functional and nonfunctional R and Avr genes.
Resumo:
Tetratheca juncea Smith (Tremandraceae) has undergone a range contraction of approx. 50 km in the last 100 years and is now listed as a vulnerable sub-shrub restricted to the central and north coast regions of New South Wales, Australia. There are approx. 250 populations in a 110 km north-south distribution and populations are usually small with fewer than 50 plants/clumps. The reproductive ecology of the species was studied to determine why seed-set is reportedly rare. Flowers are bisexual, odourless and nectarless. Flowers are presented dependentally and there are eight stamens recurved around the pistil. Anthers are poricidal, contain viable pollen and basally contain a deep-red tapetal fluid that is slightly oily. Thus flowers are presented for buzz pollinators, although none were observed at flowers during our study. The species was found to be facultatively xenogamous with only one in 50 glasshouse flowers setting seed autogamously, i.e. without pollinator assistance. Field studies revealed fertile fruit in 24 populations but production varied significantly across sites from exceedingly low (0.6 fruits per plant clump) to low (17 fruits per plant clump). Fruit-set ranged from 0 to 65%, suggesting that pollen vectors exist or that autogamy levels in the field are variable and higher than glasshouse results. Fruit production did not vary with population size, although in three of the five populations in the south-west region more than twice as much fruit was produced as in populations elsewhere. A moderately strong relationship between foliage volume and fruit : flower ratios suggests that bigger plants may be more attractive than smaller plants to pollinators. A review of Tetratheca pollination ecology revealed that several species are poorly fecund and pollinators are rare. The habitat requirements for Tetratheca, a genus of many rare and threatened species, is discussed. (C) 2003 Annals of Botany Company.
Resumo:
1 The herbivorous bug Heteropsylla cubana Crawford (Homoptera: Psyllidae) is a pest of the cattle fodder crop Leucaena (Leguminosae: Mimosoideae). The interaction between the psyllid and three varieties of its Leucaena host plant was investigated in relation to the apparent resistance of some Leucaena varieties (Leucaena leucocephala, Leucaena pallida and their hybrids) to attack. 2 Field trials demonstrated that adult psyllids distinguished among the different varieties of Leucaena over a distance, and were attracted to L. leucocephala in significantly higher numbers than to L. pallida or to the hybrid. Pesticide treatment increased the attractiveness of Leucaena plants, even of those deemed to be psyllid resistant. Numbers of psyllid eggs and nymphs, sampled in the field, reflect the arrival rates of adults at the three plant varieties. 3 Wavelength reflectance data of the three Leucaena varieties were not significantly different from one another, suggesting that psyllids cannot discriminate among the three plants using brightness or wavelength cues. There was a differential release of caryophyllene among the three varieties. Release of caryophyllene in L. leucocephala and the hybrid appeared to be influenced by environmental conditions. 4 Experiments demonstrated that caryophyllene (at least on its own) did not influence the behaviour of leucaena psyllids in relation to leucaena plants. 5 The results suggest that host plant volatiles cannot be dismissed as significant in the interaction between the leucaena psyllid and its Leucaena host plants. Further avenues for investigation are recommended and these are related to novel ways of understanding resistance in insect plant inter-relationships.
Resumo:
In the United States and several other countries., the development of population viability analyses (PVA) is a legal requirement of any species survival plan developed for threatened and endangered species. Despite the importance of pathogens in natural populations, little attention has been given to host-pathogen dynamics in PVA. To study the effect of infectious pathogens on extinction risk estimates generated from PVA, we review and synthesize the relevance of host-pathogen dynamics in analyses of extinction risk. We then develop a stochastic, density-dependent host-parasite model to investigate the effects of disease on the persistence of endangered populations. We show that this model converges on a Ricker model of density dependence under a suite of limiting assumptions, including. a high probability that epidemics will arrive and occur. Using this modeling framework, we then quantify: (1) dynamic differences between time series generated by disease and Ricker processes with the same parameters; (2) observed probabilities of quasi-extinction for populations exposed to disease or self-limitation; and (3) bias in probabilities of quasi-extinction estimated by density-independent PVAs when populations experience either form of density dependence. Our results suggest two generalities about the relationships among disease, PVA, and the management of endangered species. First, disease more strongly increases variability in host abundance and, thus, the probability of quasi-extinction, than does self-limitation. This result stems from the fact that the effects and the probability of occurrence of disease are both density dependent. Second, estimates of quasi-extinction are more often overly optimistic for populations experiencing disease than for those subject to self-limitation. Thus, although the results of density-independent PVAs may be relatively robust to some particular assumptions about density dependence, they are less robust when endangered populations are known to be susceptible to disease. If potential management actions involve manipulating pathogens, then it may be useful to. model disease explicitly.
Resumo:
Rhizosphere enhanced biodegradation of organic pollutants has been reported frequently and a stimulatory role for specific components of rhizodeposits postulated. As rhizodeposit composition is a function of plant species and soil type, we compared the effect of Lolium perenne and Trifolium pratense grown in two different soils (a sandy silt loam: pH 4, 2.8% OC, no previous 2,4-D exposure and a silt loam: pH 6.5, 4.3% OC, previous 2,4-D exposure) on the mineralization of the herbicide 2,4-D (2,4-dichlorophenoxyacetic acid). We investigated the relationship of mineralization kinetics to dehydrogenase activity, most probable number of 2,4-D degraders (MPN2,4-D) and 2,4-D degrader composition (using sequence analysis of the gene encoding alpha-ketoglutarate/2,4-D dioxygenase (tfdA)). There were significant (P < 0.01) plant-soil interaction effects on MPN2,4-D and 2,4-D mineralization kinetics (e.g. T pratense rhizodeposits enhanced the maximum mineralization rate by 30% in the acid sandy silt loam soil, but not in the neutral silt loam soil). Differences in mineralization kinetics could not be ascribed to 2,4-D degrader composition as both soils had tfdA sequences which clustered with tfdAs representative of two distinct classes of 2,4-D degrader: canonical R. eutropha JMP134-like and oligotrophic alpha-proteobacterial-like. Other explanations for the differential rhizodeposit effect between soils and plants (e.g. nutrient competition effects) are discussed. Our findings stress that complexity of soil-plant-microbe interactions in the rhizosphere make the occurrence and extent of rhizosphere-enhanced xenobiotic degradation difficult to predict.
Resumo:
Enhanced biodegradation of organic xenobiotic compounds in the rhizosphere is frequently recorded although the specific mechanisms are poorly understood. We have shown that the mineralization of 2,4-dichlorophenoxyacetic acid (2,4-D) is enhanced in soil collected from the rhizosphere of Trifolium pratense[e.g. maximum mineralization rate = 7.9 days(-1) and time at maximum rate (t(1)) = 16.7 days for 12-day-old T. pratense soil in comparison with 4.7 days(-1) and 25.4 days, respectively, for non-planted controls). The purpose of this study was to gain a better understanding of the plant-microbe interactions involved in rhizosphere-enhanced biodegradation by narrowing down the identity of the T. pratense rhizodeposit responsible for stimulating the microbial mineralization of 2,4-D. Specifically, we investigated the distribution of the stimulatory component(s) among rhizodeposit fractions (exudates or root debris) and the influence of soil properties and plant species on its production. Production of the stimulatory rhizodeposit was dependent on soil pH (e.g. t(1) for roots grown at pH 6.5 was significantly lower than for those grown at pH 4.4) but independent of soil inorganic N concentration. Most strikingly, the stimulatory rhizodeposit was only produced by T. pratense grown in non-sterile soil and was present in both exudates and root debris. Comparison of the effect of root debris from plant species (three each) from the classes monocotyledon, dicotyledon (non-legume) and dicotyledon (legume) revealed that legumes had by far the greatest positive impact on 2,4-D mineralization kinetics. We discuss the significance of these findings with respect to legume-rhizobia interactions in the rhizosphere.
Resumo:
Soapberry bugs are worldwide seed predators of plants in the family Sapindaceae. Australian sapinds are diverse and widespread, consisting of about 200 native trees and shrubs. This flora also includes two introduced environmental weeds, plus cultivated lychee (Litchi chinensis Sonn.), longan (Dimocarpus longan Lour.) and rambutan (Nephelium lappaceum L.). Accordingly, Australian soapberry bugs may be significant in ecology, conservation and agriculture. Here we provide the first account of their ecology. We find five species of Leptocoris Hahn in Australia, and list sapinds that do and do not serve as reproductive hosts. From museum and field records we map the continental distributions of the insects and primary hosts. Frequency of occupation varies among host species, and the number of hosts varies among the insects. In addition, differences in body size and beak length are related to host use. For example, the long-beaked Leptocoris tagalicus Burmeister is highly polyphagous in eastern rainforests, where it occurs on at least 10 native and non-native hosts. It aggregates on hosts with immature fruit and commences feeding before fruits dehisce. Most of its continental range, however, matches that of a single dryland tree, Atalaya hemiglauca F. Muell., which has comparatively unprotected seeds. The taxon includes a smaller and shorter-beaked form that is closely associated with Atalaya, and appears to be taxonomically distinct. The other widespread soapberry bug is the endemic Leptocoris mitellatus Bergroth. It too is short-beaked, and colonises hosts phenologically later than L. tagalicus, as seeds become more accessible in open capsules. Continentally its distribution is more southerly and corresponds mainly to that of Alectryon oleifolius Desf. Among all host species, the non-native environmental weeds Cardiospermum L. and Koelreuteria Laxm. are most consistently attacked, principally by L. tagalicus. These recent host shifts have biocontrol implications. In contrast, the sapinds planted as fruit crops appear to be less frequently used at present and mainly by the longer-beaked species.
Resumo:
Aims: Identification of a gene for self-protection from the antibiotic-producing plant pathogen Xanthomonas albilineans, and functional testing by heterologous expression. Methods and Results: Albicidin antibiotics and phytotoxins are potent inhibitors of prokaryote DNA replication. A resistance gene (albF) isolated by shotgun cloning from the X. albilineans albicidin-biosynthesis region encodes a protein with typical features of DHA14 drug efflux pumps. Low-level expression of albF in Escherichia coli increased the MIC of albicidin 3000-fold, without affecting tsx-mediated albicidin uptake into the periplasm or resistance to other tested antibiotics. Bioinformatic analysis indicates more similarity to proteins involved in self-protection in polyketide-antibiotic-producing actinomycetes than to multi-drug resistance pumps in other Gram-negative bacteria. A complex promoter region may co-regulate albF with genes for hydrolases likely to be involved in albicidin activation or self-protection. Conclusions: AlbF is the first apparent single-component antibiotic-specific efflux pump from a Gram-negative antibiotic producer. It shows extraordinary efficiency as measured by resistance level conferred upon heterologous expression. Significance and Impact of the Study: Development of the clinical potential of albicidins as potent bactericidial antibiotics against diverse bacteria has been limited because of low yields in culture. Expression of albF with recently described albicidin-biosynthesis genes may enable large-scale production. Because albicidins are X. albilineans pathogenicity factors, interference with AlbF function is also an opportunity for control of the associated plant disease.
Resumo:
1. Some of the most damaging invasive plants are dispersed by frugivores and this is an area of emerging importance in weed management. It highlights the need for practical information on how frugivores affect weed population dynamics and spread, how frugivore populations are affected by weeds and what management recommendations are available. 2. Fruit traits influence frugivore choice. Fruit size, the presence of an inedible peel, defensive chemistry, crop size and phenology may all be useful traits for consideration in screening and eradication programmes. By considering the effect of these traits on the probability, quality and quantity of seed dispersal, it may be possible to rank invasive species by their desirability to frugivores. Fruit traits can also be manipulated with biocontrol agents. 3. Functional groups of frugivores can be assembled according to broad species groupings, and further refined according to size, gape size, pre- and post-ingestion processing techniques and movement patterns, to predict dispersal and establishment patterns for plant introductions. 4. Landscape fragmentation can increase frugivore dispersal of invasives, as many invasive plants and dispersers readily use disturbed matrix environments and fragment edges. Dispersal to particular landscape features, such as perches and edges, can be manipulated to function as seed sinks if control measures are concentrated in these areas. 5.Where invasive plants comprise part of the diet of native frugivores, there may be a conservation conflict between control of the invasive and maintaining populations of the native frugivore, especially where other threats such as habitat destruction have reduced populations of native fruit species. 6. Synthesis and applications. Development of functional groups of frugivore-dispersed invasive plants and dispersers will enable us to develop predictions for novel dispersal interactions at both population and community scales. Increasingly sophisticated mechanistic seed dispersal models combined with spatially explicit simulations show much promise for providing weed managers with the information they need to develop strategies for surveying, eradicating and managing plant invasions. Possible conservation conflicts mean that understanding the nature of the invasive plant-frugivore interaction is essential for determining appropriate management.