36 resultados para Osteoblast Proliferation
Resumo:
Bone cell cultures were evaluated to determine if osteogenic cell populations at different skeletal sites in the horse are heterogeneous. Osteogenic cells were isolated from cortical and cancellous bone in vitro by an explant culture method. Subcultured cells were induced to differentiate into bone-forming osteoblasts. The osteoblast phenotype was confirmed by immunohistochemical testing for osteocalcin and substantiated by positive staining of cells for alkaline phosphatase and the matrix materials collagen and glycosaminoglycans. Bone nodules were stained by the von Kossa method and counted. The numbers of nodules produced from osteogenic cells harvested from different skeletal sites were compared with the use of a mixed linear model. On average, cortical bone sites yielded significantly greater numbers of nodules than did cancellous bone sites. Between cortical bone sites, there was no significant difference in nodule numbers. Among cancellous sites, the radial cancellous bone yielded significantly more nodules than did the tibial cancellous bone. Among appendicular skeletal sites, tibial metaphyseal bone yielded significantly fewer nodules than did all other long bone sites. This study detected evidence of heterogeneity of equine osteogenic cell populations at various skeletal sites. Further characterization of the dissimilarities is warranted to determine the potential role heterogeneity plays in differential rates of fracture healing between skeletal sites.
Resumo:
Bone tissue homeostasis relies upon the ability of cells to detect and interpret extracellular signals that direct changes in tissue architecture. This study utilized a four-point bending model to create both fluid shear and strain forces (loading) during the time-dependent progression of MC3T3-E1 preosteoblasts along the osteogenic lineage. Loading was shown to increase cell number, alkaline phosphatase (ALP) activity, collagen synthesis, and the mRNA expression levels of Runx2, osteocalcin (OC), osteopontin, and cyclo-oxygenase-2. However, mineralization in these cultures was inhibited, despite an increase in calcium accumulation, suggesting that loading may inhibit mineralization in order to increase matrix deposition. Loading also increased fibroblast growth factor receptor-3 (FGFR3) expression coincident with an inhibition of FGFR1, FGFR4, FGF1, and extracellular signal-related kinase (ERK)1/2 phosphorylation. To examine whether these loading-induced changes in cell phenotype and FGFR expression could be attributed to the inhibition of ERK1/2 phosphorylation, cells were grown for 25 days in the presence of the MEK1/2 inhibitor, U0126. Significant increases in the expression of FGFR3, ALP, and OC were observed, as well as the inhibition of FGFR1, FGFR4, and FGF1. However, U0126 also increased matrix mineralization, demonstrating that inhibition of ERK1/2 phosphorylation cannot fully account for the changes observed in response to loading. in conclusion, this study demonstrates that preosteoblasts are mechanoresponsive, and that long-term loading, whilst increasing proliferation and differentiation of preosteoblasts, inhibits matrix mineralization. In addition, the increase in FGFR3 expression suggests that it may have a role in osteoblast differentiation.
Resumo:
The role of growth hormone (GH) in embryonic growth is controversial, yet preimplantation embryos express GH, insulin-like growth factor I (IGF-I) and their receptors. In this study, addition of bovine GH doubled the proportion of two-cell embryos forming blastocysts and increased by about 25% the number of cells in those blastocysts with a concentration-response curve showing maximal activity at 1 pg bovine GH ml(-1), with decreasing activity at higher and lower concentrations. GH increased the number of cells in the trophectoderm by 25%, but did not affect the inner cell mass of blastocysts. Inhibition of cell proliferation by anti-GH antiserum indicated that GH is a potent autocrine or paracrine regulator of the number of trophectoderm cells in vivo. Type 1 IGF receptors (IGF1R) were localized to cytoplasmic vesicles and plasma membrane in the apical domains of uncompacted and compacted eight-cell embryos, but were predominantly apparent in cytoplasmic vesicles of the trophectoderm cells of the blastocyst, similar to GH receptors. Studies using alphaIR3 antiserum which blocks ligand activation of IGF1R, showed that IGF1R participate in the autocrine or paracrine regulation of the number of cells in the inner cell mass by an endogenous IGF-I-IGF1R pathway. However, alphaIR3 did not affect GH stimulation of the number of trophectoderm cells. Therefore, CH does not use secondary actions via embryonic IGF-I to modify the number of blastocyst cells. This result indicates that GH and IGF-I act independently. GH may selectively regulate the number of trophectoderm cells and thus implantation and placental growth. Embryonic GH may act in concert with IGF-I, which stimulates proliferation in the inner cell mass, to optimize blastocyst development.
Resumo:
The mitogen-activated protein ( MAP) kinases contribute to altered cell growth and function in a variety of disease states. However, their role in the endothelial complications of diabetes mellitus remains unclear. Human endothelial cells were exposed for 72 h to 5 mM ( control) or 25 mM ( high) glucose or 5 mM glucose plus 20 mM mannitol ( osmotic control). The roles of p38 and p42/44 MAP kinases in the high glucose-induced growth effects were determined by assessment of phosphorylated MAP kinases and their downstream activators by Western blot and by pharmacological inhibition of these MAP kinases. Results were expressed as a percentage ( means +/- SE) of control. High glucose increased the activity of total and phosphorylated p38 MAP kinase ( P < 0.001) and p42/44 MAP kinase ( P < 0.001). Coexposure of p38 MAP kinase blocker with high glucose reversed the antiproliferative but not the hypertrophic effects associated with high-glucose conditions. Transforming growth factor (TGF)-beta1 increased the levels of phosphorylated p38 MAP kinase, and p38 MAP kinase blockade reversed the antiproliferative effects of this cytokine. The high glucose-induced increase in phosphorylated p38 MAP kinase was reversed in the presence of TGF-beta1 neutralizing antibody. Although hyperosmolarity also induced antiproliferation (P < 0.0001) and cell hypertrophy (P < 0.05), there was no change in p38 activity, and therefore inhibition of p38 MAP kinase had no influence on these growth responses. Blockade of p42/44 MAP kinase had no effect on the changes in endothelial cell growth induced by either high glucose or hyperosmolarity. High glucose increased p42/44 and p38 MAP kinase activity in human endothelial cells, but only p38 MAP kinase mediated the antiproliferative growth response through the effects of autocrine TGF-beta1. High glucose-induced endothelial cell hypertrophy was independent of activation of the MAP kinases studied. In addition, these effects were independent of any increase in osmolarity associated with high-glucose exposure.
Resumo:
The progression of renal disease correlates strongly with hypertension and the degree of proteinuria, suggesting a link between excessive Na+ reabsorption and exposure of the proximal tubule to protein. The present study investigated the effects of albumin on cell growth and Na+ uptake in primary cultures of human proximal tubule cells (PTC). Albumin (1.0 mg/ml) increased cell proliferation to 134.1 +/- 11.8% (P < 0.001) of control levels with no change in levels of apoptosis. Exposure to 0.1 and 1.0 mg/ml albumin increased total Na-22(+) uptake to 119.1 &PLUSMN; 6.3% (P = 0.005) and 115.6 &PLUSMN; 5.3% (P < 0.006) of control levels, respectively, because of an increase in Na+/H+ exchanger isoform 3 (NHE3) activity. This was associated with an increase in NHE3 mRNA to 161.1 +/- 15.1% (P < 0.005) of control levels in response to 0.1 mg/ml albumin. Using confocal microscopy with a novel antibody raised against the predicted extracellular NH2 terminus of human NHE3, we observed in nonpermeabilized cells that exposure of PTC to albumin (0.1 and 1.0 mg/ml) increased NHE3 at the cell surface to 115.4 &PLUSMN; 2.7% (P < 0.0005) and 122.4 +/- 3.7% (P < 0.0001) of control levels, respectively. This effect was paralleled by significant increases in NHE3 in the subplasmalemmal region as measured in permeabilized cells. These albumin-induced increases in expression and activity of NHE3 in PTC suggest a possible mechanism for Na+ retention in response to proteinuria.
Resumo:
We examined the potential role of SMAD7 in human epidermal keratinocyte differentiation. Overexpression of SMAD7 inhibited the activity of the proliferation-specific promoters for the keratin 14 and cdc2 genes and reduced the expression of the mRNA for the proliferation-specific genes cdc2 and E2F1. The ability of SMAD7 to suppress cdc2 promoter activity was lost in transformed keratinocyte cell lines and was mediated by a domain(s) located between aa 195-395 of SMAD7. This domain lies outside the domain required to inhibit TGFbeta1 signaling, suggesting that this activity is mediated by a novel functional domain(s). Examination of AP1, NFkappaB, serum response element, Gli, wnt, and E2F responsive reporters indicated that SMAD7 significantly suppressed the E2F responsive reporter and modestly increased AP1 activity in proliferating keratinocytes. These data Suggest that SMAD7 may have a role in TGFbeta-independent signaling events in proliferating/undifferentiated keratinocytes. The effects of SMAD7 in differentiated keratinocytes indicated a more traditional role for SMAD7 as an inhibitor of TGFbeta action. SMAD7 was unable to initiate the expression of differentiation markers but was able to superinduce/derepress differentiation-specific markers and genes in differentiated keratinocytes. This latter role is consistent with the ability of SMAD7 to inhibit TGFbeta-mediated suppression of keratinocyte differentiation and suggest that the opposing actions of SMAD7 and TGFbeta may serve to modulate squamous differentiation. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
The receptor protein tyrosine phosphatase density-enhanced phosphatase-1 (DEP-1) has been implicated in aberrant cancer cell growth and immune cell function, however, its function within cells has yet to be properly elucidated. To investigate the cellular function of DEP-1, stable cell lines inducibly expressing DEP-1 were generated. Induction of DEP-1 expression was found to decrease PDGF-stimulated tyrosine phosphorylation of a number of cellular proteins including the PDGF receptor, and to inhibit growth factor-stimulated phosphorylation of components of the MAPK pathway, indicating that DEP-1 antagonised PDGF receptor signalling. This was supported by data showing that DEP-1 expression resulted in a reduction in cell proliferation. DEP-1-expressing cells had fewer actin-containing microfilament bundles, reduced vinculin and paxillin-containing adhesion plaques, and were defective in interactions with fibronectin. Defective cell-substratum adhesion correlated with lack of activation of FAK in DEP-1-expressing cells. Time-lapse interference reflection microscopy of live cells revealed that although small focal contacts at the leading edge were generated in DEP-1-expressing cells, they failed to mature into stable focal adhesions, as found in control cells. Further motility analysis revealed that DEP-1-expressing cells retained limited random motility, but showed no chemotaxis towards a gradient of PDGF. In addition, cell-cell contacts were disrupted, with a change in the localisation of cadherin from discrete areas of cell-cell contact to large areas of membrane interaction, and there was a parallel redistribution of beta-catenin. These results demonstrate that DEP-1 is a negative regulator of cell proliferation, cell-substratum contacts, motility and chemotaxis in fibroblasts.
Resumo:
Studies have demonstrated that polymeric biomaterials have the potential to support osteoblast growth and development for bone tissue repair. Poly( beta- hydroxybutyrate- co- beta- hydroxyvalerate) ( PHBV), a bioabsorbable, biocompatible polyhydroxy acid polymer, is an excellent candidate that, as yet, has not been extensively investigated for this purpose. As such, we examined the attachment characteristics, self- renewal capacity, and osteogenic potential of osteoblast- like cells ( MC3T3- E1 S14) when cultured on PHBV films compared with tissue culture polystyrene ( TCP). Cells were assayed over 2 weeks and examined for changes in morphology, attachment, number and proliferation status, alkaline phosphatase ( ALP) activity, calcium accumulation, nodule formation, and the expression of osteogenic genes. We found that these spindle- shaped MC3T3- E1 S14 cells made cell - cell and cell - substrate contact. Time- dependent cell attachment was shown to be accelerated on PHBV compared with collagen and laminin, but delayed compared with TCP and fibronectin. Cell number and the expression of ALP, osteopontin, and pro- collagen alpha 1( I) mRNA were comparable for cells grown on PHBV and TCP, with all these markers increasing over time. This demonstrates the ability of PHBV to support osteoblast cell function. However, a lag was observed for cells on PHBV in comparison with those on TCP for proliferation, ALP activity, and cbfa- 1 mRNA expression. In addition, we observed a reduction in total calcium accumulation, nodule formation, and osteocalcin mRNA expression. It is possible that this cellular response is a consequence of the contrasting surface properties of PHBV and TCP. The PHBV substrate used was rougher and more hydrophobic than TCP. Although further substrate analysis is required, we conclude that this polymer is a suitable candidate for the continued development as a biomaterial for bone tissue engineering.
Resumo:
Overexpression of heterogeneous nuclear ribonucleoproteins (hnRNPs) A2 and B1 has been observed in a variety of tumour types, however, it is unknown whether this dysregulation is a consequence of, or a driving force for, unregulated cell proliferation. We have shown that the levels of hnRNPs A1, A2 and B1, but not A3, are modulated during the cell cycle of Colo16 squamous carcinoma cells and HaCaT immortalized keratinocytes, suggesting that A1, A2 and B1 are needed at particular cell cycle stages. However, the levels of hnRNP A1, A2 and B1 mRNAs were constant, indicating that regulation of protein levels was controlled at the level of translation. RNAi suppression of hnRNP At or A3 alone did not affect the proliferation of Colo16 cells but the proliferation rate was significantly reduced when both were suppressed simultaneously, or when either was suppressed together with hnRNP A2. Reducing hnRNP A2 expression in Colo16 and HaCaT cells by RNAi led to a non-apoptotic-related decrease in cell proliferation, reinforcing the view that this protein is required for cell proliferation. Suppression of hnRNP A2 in Colo16 cells was associated with increased p21 levels but p53 levels remained unchanged. In addition, expression of BRCA1 was downregulated, at both mRNA and protein levels. The observed effects of hnRNP A2 and its isoforms on cell proliferation and their correlation with BRCA1 and p21 expression suggest that these hnRNP proteins play a role in cell proliferation.
Resumo:
Alterations in Ca2+ signaling may contribute to tumorigenesis and the mechanism of action of some anticancer drugs. The plasma membrane calcium-ATPase (PMCA) is a crucial controller of intracellular Ca2+ signaling. Altered PMCA expression occurs in the mammary gland during lactation and in breast cancer cell lines. Despite this, the consequences of PMCA inhibition in breast cancer cell lines have not been investigated. In this work, we used Tet-off PMCA antisense-expressing MCF-7 cells to assess the effects of PMCA inhibition in a human breast cancer cell line. At a level of PMCA inhibition that did not completely prevent PMCA-mediated Ca2+ efflux and did not induce cell death, a dramatic inhibition of cellular proliferation was observed. Fluorescence-activated cell sorting analysis indicated that PMCA antisense involves changes in cell cycle kinetics but not cell cycle arrest. We concluded that modulation of PMCA has important effects in regulating the proliferation of human breast cancer MCF-7 cells.
Resumo:
Conditional knockout of the KAP3 subunit from the kinesin motor KIF3 alters tissue patterning and causes abnormal proliferation of neural progenitor cells in the mouse brain. Impaired transport of N-cadherin to the surface of these cells may be one explanation for how such defects arise.