27 resultados para OVERLOAD
Resumo:
Twelve dairy heifers were used to examine the clinical response of an alimentary oligofructose overload. Six animals were divided into 3 subgroups, and each was given a bolus dose of 13, 17, or 21 g/kg of oligofructose orally. The control group (n = 6) was sham-treated with tap water. Signs of lameness, cardiovascular function, and gastrointestinal function were monitored every 6 h during development of rumen acidosis. The heifers were euthanized 48 and 72 h after administration of oligofructose. All animals given oligofructose developed depression, anorexia, and diarrhea 9 to 39 h after receiving oligofructose. By 33 to 45 h after treatment, the feces returned to normal consistency and the heifers began eating again. Animals given oligofructose developed transient fever, severe metabolic acidosis, and moderate dehydration, which were alleviated by supportive therapy. Four of 6 animals given oligofructose displayed clinical signs of laminitis starting 39 to 45 h after receiving oligofructose and lasting until euthanasia. The lameness was obvious, but could easily be overlooked by the untrained eye, because the heifers continued to stand and walk, and did not interrupt their eating behavior. No positive pain reactions or lameness were seen in control animals. Based on these results, we conclude that an alimentary oligofructose overload is able to induce signs of acute laminitis in cattle. This model offers a new method, which can be used in further investigation of the pathogenesis and pathophysiology of bovine laminitis.
Resumo:
Our laboratories have prepared a novel class of iron (Fe) chelators of the 2-pyridylcarboxaldehyde isonicotinoyl hydrazone (PCIH) class. This article will review the iron chelation efficacy of this series of chelators, both in cell culture and in animal models. Several PCIH analogs were shown to be effective at inducing iron mobilization and preventing iron uptake from the iron-transport protein, transferrin. Moreover, several of these ligands were effective at permeating the mitochondrion and inducing iron release. Studies in mice demonstrated that the PCIH analog, PCTH, was orally active and well tolerated by mice at doses ranging from 50 to 100 mg kg(-1) , twice daily (b.d.). A dose-dependent increase in fecal Fe-59 excretion was observed in the PCTH-treated group. This level of iron excretion was similar to that found for the orally effective chelators, pyridoxal isonicotinoyl hydrazone (PIH) and deferiprone (L1). The PCIH group of ligands clearly has the potential for the treatment of ss-thalassemia (thal) and Friedreich's Ataxia (FA).
Resumo:
The close association of excessive alcohol consumption and clinical expression of hemochromatosis has been of widespread interest for many years. In most populations of northern European extraction, more than 90% of patients with overt hemochromatosis are homozygous for the C282Y mutation in the HFE gene. Nevertheless, the strong association of heavy alcohol intake with the clinical expression of hemochromatosis remains. We (individually or in association with colleagues from our laboratories) have performed three relevant studies in which this association was explored. In the first, performed in 1975 before the cloning of the HFE gene, the frequency of clinical symptoms and signs was compared in patients with classical hemochromatosis who consumed 100 g or more of alcohol per day versus in nondrinkers or moderate drinkers who consumed less than 100 g of alcohol per day. The results showed no difference between the two groups except for features of complications of alcoholism in the first group, especially jaundice, peripheral neuritis, and hepatic failure. Twenty-five percent of those with heavy alcohol consumption showed histologic features of alcoholic liver disease (including cirrhosis) together with heavy iron overload. It was concluded that these patients had the genetic disease complicated by alcoholic liver disease. In the second study (2002), 206 subjects with classical HFE-associated hemochromatosis in whom liver biopsy had been performed were evaluated to quantify the contribution of excess alcohol consumption to the development of cirrhosis in hemochromatosis. Cirrhosis was approximately nine times more likely to develop in subjects with hemochromatosis who consumed more than 60 g of alcohol per day than in those who drank less than this amount. In the third study (2002), 371 C282Y-homozygous relatives of patients with HFE-associated hemochromatosis were assessed. Eleven subjects had cirrhosis on liver biopsy and four of these drank 60 g or more of alcohol per day. The reason why heavy alcohol consumption accentuates the clinical expression of hemochromatosis is unclear. Increased dietary iron or increased iron absorption is unlikely. The most likely explanation would seem to be the added co-factor effect of iron and alcohol, both of which cause oxidative stress, hepatic stellate cell activation, and hepatic fibrogenesis. In addition, the cumulative effects of other forms of liver injury may result when iron and alcohol are present concurrently. Clearly, the addition of dietary iron in subjects homozygous for hemochromatosis would be unwise. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Objective: The calcineurin pathway has been involved in the development of cardiac hypertrophy, yet it remains unknown whether calcineurin activity can be regulated in myocardium independently from hypertrophy and cardiac load. Methods: To test that hypothesis, we measured calcineurin activity in a rat model of infrarenal aortic constriction (IR), which affects neurohormonal pathways without increasing cardiac afterload. Results: In this model, there was no change in arterial pressure over the 4-week experimental period, and the left ventricle/body weight ratio did not increase. At 2 weeks after IR, calcineurin activity was increased 1.8-fold (P
Resumo:
Reasons for performing study: Acute laminitis is characterised by hoof lamellar dermal-epidermal separation at the basement membrane (BM) zone. Hoof lamellar explants cultured in vitro can also be made to separate at the basement membrane zone and investigating how this occurs may give insight into the poorly understood pathophysiology of laminitis. Objectives: To investigate why glucose deprivation and metalloproteinase (MMP) activation in cultured lamellar explants leads to dermo-epidermal separation. Methods: Explants, cultured without glucose or with the MMP activator p-amino-phenol-mercuric acetate (APMA), were subjected to tension and processed for transmission electron microscopy (TEM). Results: Without glucose, or with APMA, explants under tension separated at the dermo-epidermal junction. This in vitro separation occurred via 2 different ultrastructural processes. Lack of glucose reduced hemidesmosomes (HDs) numbers until they disappeared and the basal cell cytoskeleton collapsed. Anchoring filaments (AFs), connecting the basal cell plasmalemma to the BM, were unaffected although they failed under tension. APMA activation of constituent lamellar MMPs did not affect HDs but caused AFs to disappear, also leading to dermo-epidermal separation under tension. Conclusions: Natural laminitis may occur in situations where glucose uptake by lamellar basal cells is compromised (e.g. equine Cushing's disease, obesity, hyperlipaemia, ischaemia and septicaemia) or when lamellar MMPs are activated (alimentary carbohydrate overload). Potential relevance: Therapies designed to facilitate peripheral glucose uptake and inhibit lamellar MMP activation may prevent or ameliorate laminitis.
Resumo:
The 2-pyridinecarbaldehyde isonicotinoyl hydrazone (HPCIH) family of ligands are typically tridentate N,N,O chelators that exhibit very high in vitro activity in mobilizing intracellular Fe and are promising candidates for the treatment of Fe overload diseases. Complexation of ferrous perchlorate with HPCIH in MeCN solution gives the expected six-coordinate complex Fe-II(PCIH)(2). However, complexation of Fe-II with 2-pyridinecarbaldehyde picolinoyl hydrazone (HPCPH, an isomer of HPCIH) under the same conditions leads to spontaneous assembly of an unprecedented asymmetric, mixed-ligand dinuclear triple helical complex Fe-2(II)(PCPH)(2)(PPH), where PPH2- is the dianion of bis(picolinoyl) hydrazine. The X-ray crystal structure of this complex shows that each ligand binds simultaneously to both metal centres in a bidentate fashion. The dinuclear complex exhibits two well separated and totally reversible Fe-III/II redox couples as shown by cyclic voltammetry in MeCN solution.
Increased duodenal expression of divalent metal transporter 1 and iron-regulated gene 1 in cirrhosis
Resumo:
Hepatic hemosiderosis and increased iron absorption are common findings in cirrhosis. It has been proposed that a positive relation exists between intestinal iron absorption and the development of hepatic hemosiderosis. The current study investigated the duodenal expression of the iron transport molecules divalent metal transporter 1 (DMT1 [IRE]), iron-regulated gene 1 (Ireg1 [ferroportin]), hephaestin, and duodenal cytochrome b (Dyctb) in 46 patients with cirrhosis and 20 control subjects. Total RNA samples were extracted from duodenal biopsy samples and the expression of the iron transport genes was assessed by ribonuclease protection assays. Expression of DMT1 and Ireg1 was increased 1.5 to 3-fold in subjects with cirrhosis compared with iron-replete control subjects. The presence of cirrhosis per se and serum ferritin (SF) concentration were independent factors that influenced the expression of DMT1. However, only SF concentration was independently associated with Iregl expression. In cirrhosis, the expression of DMT1 and Iregl was not related to the severity of liver disease or cirrhosis type. There was no correlation between the duodenal expression of DMT1 and Iregl and the degree of hepatic siderosis. In conclusion, the presence of cirrhosis is an independent factor associated with increased expression of DMT1 but not Iregl. The mechanism by which cirrhosis mediates this change in DMT1 expression has yet to be determined. Increased expression of DMT1 may play an important role in the pathogenesis of cirrhosis-associated hepatic iron overload.
Resumo:
Background. Hereditary hemochromatosis is an autosomal recessive disorder of iron metabolism that is characterized by excess accumulation of iron in various organs and often leads to diabetes mellitus (DM). To study whether mutations in the hemochromatosis gene (HFE) could be a risk factor for the development of gestational diabetes mellitus (GDM), the prevalence of HFE mutations in patients with GDM was compared to that of healthy pregnant controls. Methods: GDM was diagnosed in 208 of 2,421 pregnant woman screened between the 24th and 28th week of gestation over a period of 18 months. Patients and 170 matched control subjects were screened for the HFE gene mutations C282Y and H63D. Results: In North and Central European GDM patients, the allele frequency of the C282Y mutation (7.7%) was higher than in pregnant controls (2.9%; p = 0.04), while the frequency of the H63D mutation was not different (p = 0.45). Three patients with GDM were homozygous for H63D (3.1%), 1 patient was homozygous for C282Y (1.0%), 2 patients were compound heterozygous (2.0%) and 26 were heterozygous [11 C282Y (11.2%) and 15 H63D (15.3%)]. C282Y and H63D allele frequencies were not different between controls and GDIVI patients of Southern European or non-European origin. Irrespective of the HIFE-mutation status, serum ferritin levels were increased in patients with GDM compared to healthy pregnant controls (p = 0.01), while transferrin saturation was similar in both groups. Conclusions: In North and Central European patients with GDM, the C282Y allele frequency is higherthan in healthy pregnant women, suggesting a genetic susceptibility to the development of GDM. Copyright (c) 2005 S. Karger AG, Basel.
Resumo:
The search for orally effective drugs for the treatment of iron overload disorders is an important goal in improving the health of patients suffering diseases such as beta-thalassemia major. Herein, we report the syntheses and characterization of some new members of a series of N-aroyl-N'-picolinoyl hydrazine chelators (the H2IPH analogs). Both 1:1 and 1:2 Fe-III:L complexes were isolated and the crystal structures of Fe(HPPH)Cl-2, Fe(4BBPH)Cl-2, Fe(HAPH)(APH) and Fe(H3BBPH)(3BBPH) were determined (H2PPH=N,N'-bis-picolinoyl hydrazine; H(2)APH=N-4-aminobenzoyl-N'-picolinoyl hydrazine, H(2)3BBPH=N-3-bromobenzoyl-N'-picolinoylhydrazine and H(2)4BBPH=N-(4-bromobenzoyl)-N'-(picolinoyl)hydrazine). In each case, a tridentate N,N,O coordination mode of each chelator with Fe was observed. The Fe-III complexes of these ligands have been synthesized and their structural, spectroscopic and electrochemical characterization are reported. Five of these new chelators, namely H2BPH (N-(benzoyl)-N'-(picolinoyl)hydrazine), H2TPH (N-(2-thienyl)-N'-(picolinoyl)-hydrazine), H2PPH, H(2)3BBPH and H(2)4BBPH, showed high efficacy at mobilizing Fe-59 from cells and inhibiting Fe-59 uptake from the serum Fe transport protein, transferrin (Tf). Indeed, their activity was much greater than that found for the chelator in current clinical use, desferrioxamine (DFO), and similar to that observed for the orally active chelator, pyridoxal isonicotinoyl hydrazone (H2PIH). The ability of the chelators to inhibit Fe-59 uptake could not be accounted for by direct chelation of Fe-59-Tf. The most effective chelators also showed low antiproliferative activity which was similar to or less than that observed with DFO, which is important in terms of their potential use as agents to treat Fe-overload disease.
Resumo:
The intestinal absorption of the essential trace element iron and its mobilization from storage sites in the body are controlled by systemic signals that reflect tissue iron requirements. Recent advances have indicated that the liver-derived peptide hepcidin plays a central role in this process by repressing iron release from intestinal enterocytes, macrophages and other body cells. When iron requirements are increased, hepcidin levels decline and more iron enters the plasma. It has been proposed that the level of circulating diferric transferrin, which reflects tissue iron levels, acts as a signal to alter hepcidin expression. In the liver, the proteins HFE, transferrin receptor 2 and hemojuvelin may be involved in mediating this signal as disruption of each of these molecules decreases hepcidin expression. Patients carrying mutations in these molecules or in hepcidin itself develop systemic iron loading (or hemochromatosis) due to their inability to down regulate iron absorption. Hepcidin is also responsible for the decreased plasma iron or hypoferremia that accompanies inflammation and various chronic diseases as its expression is stimulated by pro-inflammatory cytokines such as interleukin 6. The mechanisms underlying the regulation of hepcidin expression and how it acts on cells to control iron release are key areas of ongoing research.
Resumo:
HFE-associated hereditary haemochromatosis is a recessive, iron-overload disorder that affects about one in 200 north Europeans and that can be easily prevented. However, genetic screening for this disease is controversial, and so we assessed whether such screening was suitable for communities. Cheek-brush screening for the Cys282Tyr HFE mutation was offered to individuals in the workplace. Outcomes were assessed by questionnaires before and after testing. 11307 individuals were screened. We recorded no increase in anxiety. in individuals who were homozygous for the Cys282Tyr mutation or non-homozygous. Self-reported tiredness before testing was significantly higher in homozygous participants than in non-homozygous participants (chi(2) test, p=0.029). Of the 47 homozygous individuals identified, 46 have taken steps to treat or prevent iron accumulation. Population genetic screening for HFE-associated hereditary haemochromatosis can be practicable and acceptable.
Resumo:
On release from cardiac mast cells, alpha-chymase converts angiotensin I (Ang I) to Ang II. In addition to Ang II formation, alpha-chymase is capable of activating TGF-beta 1 and IL-1 beta, forming endothelins consisting of 31 amino acids, degrading endothelin-1, altering lipid metabolism, and degrading the extracellular matrix. Under physiological conditions the role of chymase in the mast cells of the heart is uncertain. In pathological situations, chymase may be secreted and have important effects on the heart. Thus, in animal models of cardiomyopathy, pressure overload, and myocardial infarction, there are increases in both chymase mRNA levels and chymase activity in the heart. In human diseased heart homogenates, alterations in chymase activity have also been reported. These findings have raised the possibility that inhibition of chymase may have a role in the therapy of cardiac disease. The selective chymase inhibitors developed to date include TY-51076, SUN-C8257, BCEAB, NK320, and TEI-E548. These have yet to be tested in humans, but promising results have been obtained in animal models of myocardial infarction, cardiomyopathy, and tachycardia-induced heart failure. It seems likely that orally active inhibitors of chymase could have a place in the treatment of cardiac diseases where injury-induced mast cell degranulation contributes to the pathology.