16 resultados para Networked Virtual Environment
Resumo:
There is still a great deal of opportunity for research on contextual interactive immersion in virtual heritage environments. The general failure of virtual environment technology to create engaging and educational experiences may be attributable not just to deficiencies in technology or in visual fidelity, but also to a lack of contextual and performative-based interaction, such as that found in games. However, there is little written so far on exactly how game-style interaction can help improve virtual learning environments.
Resumo:
A parallel computing environment to support optimization of large-scale engineering systems is designed and implemented on Windows-based personal computer networks, using the master-worker model and the Parallel Virtual Machine (PVM). It is involved in decomposition of a large engineering system into a number of smaller subsystems optimized in parallel on worker nodes and coordination of subsystem optimization results on the master node. The environment consists of six functional modules, i.e. the master control, the optimization model generator, the optimizer, the data manager, the monitor, and the post processor. Object-oriented design of these modules is presented. The environment supports steps from the generation of optimization models to the solution and the visualization on networks of computers. User-friendly graphical interfaces make it easy to define the problem, and monitor and steer the optimization process. It has been verified by an example of a large space truss optimization. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The Virtual Learning Environment (VLE) is one of the fastest growing areas in educational technology research and development. In order to achieve learning effectiveness, ideal VLEs should be able to identify learning needs and customize solutions, with or without an instructor to supplement instruction. They are called Personalized VLEs (PVLEs). In order to achieve PVLEs success, comprehensive conceptual models corresponding to PVLEs are essential. Such conceptual modeling development is important because it facilitates early detection and correction of system development errors. Therefore, in order to capture the PVLEs knowledge explicitly, this paper focuses on the development of conceptual models for PVLEs, including models of knowledge primitives in terms of learner, curriculum, and situational models, models of VLEs in general pedagogical bases, and particularly, the definition of the ontology of PVLEs on the constructivist pedagogical principle. Based on those comprehensive conceptual models, a prototyped multiagent-based PVLE has been implemented. A field experiment was conducted to investigate the learning achievements by comparing personalized and non-personalized systems. The result indicates that the PVLE we developed under our comprehensive ontology successfully provides significant learning achievements. These comprehensive models also provide a solid knowledge representation framework for PVLEs development practice, guiding the analysis, design, and development of PVLEs. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Virtual learning environments (VLEs) are computer-based online learning environments, which provide opportunities for online learners to learn at the time and location of their choosing, whilst allowing interactions and encounters with other online learners, as well as affording access to a wide range of resources. They have the capability of reaching learners in remote areas around the country or across country boundaries at very low cost. Personalized VLEs are those VLEs that provide a set of personalization functionalities, such as personalizing learning plans, learning materials, tests, and are capable of initializing the interaction with learners by providing advice, necessary instant messages, etc., to online learners. One of the major challenges involved in developing personalized VLEs is to achieve effective personalization functionalities, such as personalized content management, learner model, learner plan and adaptive instant interaction. Autonomous intelligent agents provide an important technology for accomplishing personalization in VLEs. A number of agents work collaboratively to enable personalization by recognizing an individual's eLeaming pace and reacting correspondingly. In this research, a personalization model has been developed that demonstrates dynamic eLearning processes; secondly, this study proposes an architecture for PVLE by using intelligent decision-making agents' autonomous, pre-active and proactive behaviors. A prototype system has been developed to demonstrate the implementation of this architecture. Furthemore, a field experiment has been conducted to investigate the performance of the prototype by comparing PVLE eLearning effectiveness with a non-personalized VLE. Data regarding participants' final exam scores were collected and analyzed. The results indicate that intelligent agent technology can be employed to achieve personalization in VLEs, and as a consequence to improve eLeaming effectiveness dramatically.
Resumo:
Virtual reality exposure therapy (VRET) developed using immersive or semi-immersive virtual environments present a usability problem for practitioners. To meet practitioner requirements for lower cost and portability VRET programs must often be ported onto desktop environments such as the personal computer (PC). However, success of VRET has been shown to be linked to presence, and the environment's ability to evoke the same reactions and emotions as a real experience. It is generally accepted that high-end virtual environments ( VEs) are more immersive than desktop PCs, but level of immersion does not always predict level of presence. This paper reports on the impact on presence of porting a therapeutic VR application for Schizophrenia from the initial research environment of a semi-immersive curved screen to PC. Presence in these two environments is measured both introspectively and across a number of causal factors thought to underlie the experience of presence. Results show that the VR exposure program successfully made users feel they were present in both platforms. While the desktop PC achieved higher scores on presence across causal factors participants reported they felt more present in the curved screen environment. While comparison of the two groups was statistically significant for the PQ but not for the IPQ, subjective reports of experiences in the environments should be considered in future research as the success of VRET relies heavily on the emotional response of patients to the therapeutic program.
Resumo:
The consequences of demographic dissimilarity for group trust in work teams was examined in a virtual (computer-mediated) and a face-to-face (FTF) environment. Demographic dissimilarity (based on age, gender, country of birth, enrolled degree) was predicted to be negatively associated with group trust in the FTF environment but not in the computer-mediated environment. Participants worked in small groups on a creative task for 3 consecutive days. In the computer-mediated environment, participants worked on the task for an hour per day. In the FTF environment, participants worked on the task for 20 minutes per day. Partial support was found for the effectiveness of computer-mediated groups in reducing the negative consequences of dissimilarity. Age dissimilarity was negatively related to trust in FTF groups but not in computer-mediated groups. Birthplace dissimilarity was positively related to trust in computer-mediated groups. Implications for the successful management of virtual teams are discussed.