29 resultados para Nematodes - Biological control
Resumo:
Various factors can influence the population dynamics of phytophages post introduction, of which climate is fundamental. Here we present an approach, using a mechanistic modelling package (CLIMEX), that at least enables one to make predictions of likely dynamics based on climate alone. As biological control programs will have minimal funding for basic work (particularly on population dynamics), we show how predictions can be made using a species geographical distribution, relative abundance across its range, seasonal phenology and laboratory rearing data. Many of these data sets are more likely to be available than long-term population data, and some can be incorporated into the exploratory phase of a biocontrol program. Although models are likely to be more robust the more information is available, useful models can be developed using information on species distribution alone. The fitted model estimates a species average response to climate, and can be used to predict likely geographical distribution if introduced, where the agent is likely to be more abundant (i.e. good locations) and more importantly for interpretation of release success, the likely variation in abundance over time due to intra- and inter-year climate variability. The latter will be useful in predicting both the seasonal and long-term impacts of the potential biocontrol agent on the target weed. We believe this tool may not only aid in the agent selection process, but also in the design of release strategies, and for interpretation of post-introduction dynamics and impacts. More importantly we are making testable predictions. If biological control is to become more of a science making and testing such hypothesis will be a key component.
Resumo:
Selection of biocontrol agents that are adapted to the climates in areas of intended release demands a thorough analysis of the climates of the source and release sites. We present a case study that demonstrates how use of the CLIMEX software can improve decision making in relation to the identification of prospective areas for exploration for agents to control the woody weed, prickly acacia Acacia nilotica ssp. indica in the arid areas of north Queensland.
Resumo:
Biological control is the purposeful introduction of parasites, predators, and pathogens to reduce or suppress pest populations. Wolbachia are inherited bacteria of arthropods that have recently attracted attention for their potential as new biocontrol agents. Wolbachia manipulate host reproduction by using several strategies, one of which is cytoplasmic incompatibility (CI) [Stouthamer, R., Breeuwer, J. A. J. & Hurst, G. D. D. (1999) Annu. Rev. Microbiol. 53,71-102]. We established Wolbachia-infected lines of the medfly Ceratitis capitata using the infected cherry fruit fly Rhagoletis cerasi as donor. Wolbachia induced complete CI in the novel host. Laboratory cage populations were completely suppressed by single releases of infected males, suggesting that Wolbachia-induced CI could be used as a novel environmentally friendly tool for the control of medfly populations. The results also encourage the introduction of Wolbachia into pest and vector species of economic and hygenic relevance to suppress or modify natural populations.
Resumo:
The effects of culture filtrates of Fusarium oxysporum and Sclerotium rolfsii on egg hatching and juvenile survival of Meloidogyne incognita in vitro and impact of these filtrates on infectivity of M. incognita were investigated on soybean seedlings. Five- and 10-day-old filtrates of F. oxysporum caused 65 and 54% egg-hatching inhibition, while that of S. rolfsii caused 61 and 49% inhibition, respectively. Juveniles of M. incognita died within 6 days when incubated in 5-day-old filtrate of F. oxysporum, while the similar filtrate of S. rolfsii caused 100% juvenile mortality on the fifth day. Filtrates reduced root galling, egg population, number of adult females in soybean plants at harvest and also soil population. Culture filtrates could be used as source of biological nematicides.
Resumo:
In a search for potential biocontrol agents for Acacia melanoxylon R. Br. (Mimosaceae), larvae of the beetle Diplocoelus dilataticollis Lea (Coleoptera; Biphyllidae) were found within damaged seeds of A. melanoxylon. The gut contents of larvae and adults were examined to determine whether their diet included seeds, in apparent contradiction to the known mycophagous diet of members of this family of beetles. Calcofluor M2R White, a plant cell-wall staining optical brightener was used to differentiate between plant cell fragments and fungal tissue in the gut content smears. Gut contents of adults of a known seed predator of A. melanoxylon, a weevil of the genus Melanterius, were examined in the same way to provide a benchmark. The gut contents of D. dilataticollis differed from those of Melanterius sp. Fungal structures and microbes were found in the gut of D. dilataticollis, in contrast to plant cell fragments found in the gut of the weevil and from scrapes made directly from seeds. We conclude that larvae of D. dilataticollis feed primarily on fungi associated with damaged seed and therefore may not be the proximate cause of seed damage.
Resumo:
The encyrtid Coccidoxenoides perminutus is a widely distributed parasitoid of citrus mealybug (Planococcus citri). Worldwide, it has been implicated in successful biocontrol in only a few widely separated localities. C perminutus contributes little to control P. citri in field situations in south-east Queensland, Australia, but invades insectary cultures and reduces mealybug populations considerably under these controlled conditions. This discrepancy between poor field performance and good performance under controlled conditions was investigated to establish whether climatic factors inhibit the field performance of this species in the biological control of P. citri. Subsequent laboratory examination of the influence of varied humidities and temperatures on the activity levels and survival of C perminutus revealed a low tolerance for high saturation deficits (i.e., low % RH at high T degreesC) with reduced reproductive output. The influence of different food sources on adult survival and reproduction was also quantified, to establish if the adverse effects of climate could be overcome by supplementing adult diet. Neither honeydew from their mealybug hosts nor nectar from Alphitonia flowers significantly enhanced parasitoid survival. A subsequent test of five nectar species revealed a significant difference in their influence on C. perminutus survival and reproduction, with only Alpinia zerumbet proving to be as suitable as honey. The floral species that proved suitable in the laboratory need to be checked for their attractiveness to C perminutus in the field and for their ability to enhance the survival and reproductive output of parasitoids. This information suggests that the prevailing dry conditions in south-east Queensland citrus-growing areas apparently impede successful biological control of P. citri by C perminutus, but possibilities are available for habitat manipulation (by providing suitable nectar sources for adult parasitoids) to conserve and enhance C perminutus activity in the field. (C) 2004 Elsevier Inc. All rights reserved.