19 resultados para NEUROTOXICITY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of 31 plant extracts, which most are traditionally used to treat ciguatera fish poisoning in the Pacific area, were Studied on the cytotoxicity of mouse neuroblastoma cells produced by ouabain, veratridine and/or brevetoxin-3 or Pacific ciguatoxin-1. The cell viability was determined using a quantitative colorimetric method. A marked cytotoxicity of seven of the 31 plant extracts studied, was observed. Despite this, these plant extracts were suspected to contain active compound(s) against the cytotoxicity produced by brevetoxin (2 extracts), brevetoxin, ouabain and/or veratridine (3 extracts), or only against that of ouabain and/or veratridine (2 extracts). Among the 24 plant extracts that exhibited by themselves no cytotoxicity, 22 were active against the effect of brevetoxin or against that of both veratridine and brevetoxin. similar results were obtained when the seven most active plant extracts were reassayed using ciguatoxin instead of brevetoxin. In conclusion, the present work reports the first activity assessment of some plant extracts, achieved in vitro on a quite large scale. The fact that 27 plant extracts were found to exert, in vitro, a protective effect against the action of ciguatoxin and/or brevetoxin, paves the way for finding new active compounds to treat ciguatera fish poisoning, provided these compounds also reverse the effects of sodium channel activators. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have previously shown that the expression of NMDA receptor NR1 subunit mRNA splice variants in Alzheimer's disease (AD) brain varies according to regional susceptibility to pathological damage. Here we investigated the expression of the modulatory NR2 subunits of the NMDA receptor using quantitative RT-PCR to assay all NR2 isoforms. Significantly lower expression of NR2A and NR2B transcripts was found in susceptible regions of AD brain, whereas expression of NR2C and NR2D transcripts did not differ from that in controls. Western blot analysis confirmed a lower expression of the NR2A and NR2B isoforms at the protein level. The results suggest that NR2 subunit composition may modulate NMDA receptor-mediated excitotoxicity. NMDA receptor dysfunction might give rise to the regionally selective pattern of neuronal loss that is characteristic of AD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1 The aim was to test the hypothesis that nitric oxide ( NO) donor drugs can inhibit the 5-hydroxytryptamine (5-HT) transporter, SERT. 2 The NO donors, MAHMA/NO ( a NONOate; (Z)-1-[N-methyl-N-[6-(N-methylammoniohexyl)amino]]diazen- 1-ium-1,2-diolate), SIN-1 ( a sydnonimine; 5-amino-3-(4-morpholinyl)-1,2,3-oxadiazolium chloride), FK409 ( an oxime; (+/-)-(4-ethyl-2E-(hydroxyimino)-5-nitro-3E-hexenamide)) and peroxynitrite, but not Angeli's salt ( source of nitroxyl anion) or sodium nitrite, caused concentration-dependent inhibition of the specific uptake of [H-3]- 5-HT in COS-7 cells expressing human SERT. 3 Superoxide dismutase (150 U ml(-1)) plus catalase ( 1200 U ml(-1)), used to remove superoxide and hence prevent peroxynitrite formation, prevented the inhibitory effect of SIN-1 ( which generates superoxide) but not of MAHMA/NO or FK409. 4 The inhibitory effects of the NO donors were not affected by the free radical scavenger, hydroxocobalamin (1 mM) or the guanylate cyclase inhibitor, ODQ (1H-[ 1,2,4] oxadiazolo[4,3-a] quinoxalin-1-one; 3 muM). 5 L-Cysteine ( 1 mM; source of excess thiol residues) abolished or markedly reduced the inhibitory effects of MAHMA/NO, SIN-1, FK409 and peroxynitrite. 6 It is concluded that inhibition of SERT by the NO donors cannot be attributed exclusively to NO free radical nor to nitroxyl anion. It does not involve guanosine-3',5'-cyclic monophosphate, but may involve nitrosation of cysteine residues on the SERT protein. Peroxynitrite mediates the effect of SIN-1, but not the other drugs. 7 Data in mice with hypoxic pulmonary hypertension suggest that SERT inhibitors may attenuate pulmonary vascular remodelling. Thus, NO donors may be useful in pulmonary hypertension, not only as vasodilators, but also because they inhibit SERT, provided they display this effect in vivo at appropriate doses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At autopsy, Alzheimer's disease is characterised by the presence of amyloid plaques and neurofibrillary tangles, made up of two peptide sequences, amyloid-beta(1-40) (A beta 40) and amyloid-beta(1-42) (A beta 42). In Tyrode's solution (2 mM Ca2+), 10 mu M A beta 42 peptide almost immediately aggregates and eventually forms p-sheets. This aggregation can be inhibited with 4,5-dianilinophthalimide (DAPH). Ca2+-permeant AMPA receptors are involved in the neuronal Ca2+ influx (neurotoxicity) induced by the A beta 42 peptide in cultured neuronal cells. The Ca2+ influx observed with pre-incubated A beta 42 peptide was inhibited by DAPH. DAPH also inhibits epidermal growth factor receptor kinase, and this will prevent its development for use in Alzheimer's disease. The potential of DAPH as a small-molecule lead compound for the treatment of Alzheimer's disease next requires the separation of the structural requirements that reverse fibril formation and inhibit epidermal growth factor receptor kinase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article presents the proceedings of a symposium held at the meeting of the International Society for Biomedical Research on Alcoholism (ISBRA) in Mannheim, Germany, in October, 2004. Chronic alcoholism follows a fluctuating course, which provides a naturalistic experiment in vulnerability, resilience, and recovery of human neural systems in response to presence, absence, and history of the neurotoxic effects of alcoholism. Alcohol dependence is a progressive chronic disease that is associated with changes in neuroanatomy, neurophysiology, neural gene expression, psychology, and behavior. Specifically, alcohol dependence is characterized by a neuropsychological profile of mild to moderate impairment in executive functions, visuospatial abilities, and postural stability, together with relative sparing of declarative memory, language skills, and primary motor and perceptual abilities. Recovery from alcoholism is associated with a partial reversal of CNS deficits that occur in alcoholism. The reversal of deficits during recovery from alcoholism indicates that brain structure is capable of repair and restructuring in response to insult in adulthood. Indirect support of this repair model derives from studies of selective neuropsychological processes, structural and functional neuroimaging studies, and preclinical studies on degeneration and regeneration during the development of alcohol dependence and recovery from dependence. Genetics and brain regional specificity contribute to unique changes in neuropsychology and neuroanatomy in alcoholism and recovery. This symposium includes state-of-the-art presentations on changes that occur during active alcoholism as well as those that may occur during recovery-abstinence from alcohol dependence. Included are human neuroimaging and neuropsychological assessments, changes in human brain gene expression, allelic combinations of genes associated with alcohol dependence and preclinical studies investigating mechanisms of alcohol induced neurotoxicity, and neuroprogenetor cell expansion during recovery from alcohol dependence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neurodegenerative diseases such as Huntington's disease, ischemia, and Alzheimer's disease (AD) are major causes of death. Recently, metabotropic glutamate receptors (mGluRs), a group of seven-transmembrane-domain proteins that couple to G-proteins, have become of interest for studies of pathogenesis. Group I mGluRs control the levels of second messengers such as inositol 1,4,5-triphosphate (IP3) Cal(2+) ions and cAMP. They elicit the release of arachidonic acid via intracellular Ca2+ mobilization from intracellular stores such as mitochondria and endoplasmic reticulum. This facilitates the release of glutamate and could trigger the formation of neurofibrillary tangles, a pathological hallmark of AD. mGluRs regulate neuronal injury and survival, possibly through a series of downstream protein kinase and cysteine protease signaling pathways that affect mitochondrially mediated programmed cell death. They may also play a role in glutamate-induced neuronal death by facilitating Cal(2+) mobilization. Hence, mGluRs have become a target for neuroprotective drug development. They represent a pharmacological path to a relatively subtle amelioration of neurotoxicity because they serve a modulatory rather than a direct role in excitatory glutamatergic transmission.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show that the mutant Huntington's disease (HD) protein (mhtt) specifically inhibits endocytosis in primary striatal neurons. Unexpectedly, mhtt does not inhibit clathrin-dependent endocytosis as was anticipated based on known interacting partners. Instead, inhibition occurs through a non-clathrin, caveolar-related pathway. Expression of mhtt inhibited internalization of BODIPY-lactosylceramide (LacCer), which is internalized by a caveolar-related mechanism. In contrast, endocytosis of Alexa Fluor 594-transferrin (Tfn) and epidermal growth factor, internalized through clathrin pathway, was unaffected by mhtt expression. Caveolin-1 (cav1), the major structural protein of caveolae binds cholesterol and is responsible for its trafficking inside cells. Mhtt interacts with cav-1 and caused a striking accumulation of intracellular cholesterol. Cholesterol accumulated in cultured neurons expressing mhtt in vitro and in brains of mhtt-expressing animals in vivo, and was observed after induction of mhtt expression in PC-12 cell lines. The accumulation occurred only when mhtt and cav1 were simultaneously expressed in cells. Knockdown of cav1 in mhtt-expressing neurons blocked cholesterol accumulation and restored LacCer endocytosis. Thus, mhtt and cav1 functionally interact to cause both cellular defects. These data provide the first direct link between mhtt and caveolar-related endocytosis and also suggest a possible mechanism for HD neurotoxicity where cholesterol homeostasis is perturbed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Changes in brain gene expression are thought to be responsible for the tolerance, dependence, and neurotoxicity produced by chronic alcohol abuse, but there has been no large scale study of gene expression in human alcoholism. Methods: RNA was extracted from postmortem samples of superior frontal cortex of alcoholics and nonalcoholics. Relative levels of RNA were determined by array techniques. We used both cDNA and oligonucleotide microarrays to provide coverage of a large number of genes and to allow cross-validation for those genes represented on both types of arrays. Results: Expression levels were determined for over 4000 genes and 163 of these were found to differ by 40% or more between alcoholics and nonalcoholics. Analysis of these changes revealed a selective reprogramming of gene expression in this brain region, particularly for myelin-related genes which were downregulated in the alcoholic samples. In addition, cell cycle genes and several neuronal genes were changed in expression. Conclusions: These gene expression changes suggest a mechanism for the loss of cerebral white matter in alcoholics as well as alterations that may lead to the neurotoxic actions of ethanol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The inherent neurotoxic potential ofthe endogenous excitatory amino acid glutamate, may be causally related to the pathogenesis ofAD neurodegeneration disorders. Neuronal excitotoxicity is conceivably mediated by the N-methyl-D-aspartate-(NMDA)-Ca2+- ionotropic receptor. NMDA receptors exist as multimeric complexes comprising proteins from two families – NR1 and NR2(A-D). The polyamines, spermine and spermidine bind to, and modulate NMDA receptor efficacy via interaction with exon 5, an alternatively-spliced, 21 amino acid, N-terminal cassette. AD associated cognitive impairment may therefore occur via subunitspecific NMDA receptor dysfunction effecting regional selectivity of neuronal degradation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Excitotoxicity may have role in neuronal death in many disorders including Alzheimer disease. Sensitivity of a cell to excitotoxicity may depend on its subtype of NMDA receptors. A drug that selectively reduced such overstimulation could limit susceptibility to damage. We examined the pharmacology of NMDA receptor subtypes in response to the agonists glutamate and glycine, the modulator spermine, and the antagonists conantokin-G and its Ala(7) analogue in Xenopus oo¨ cytes. Cells were injected with capped RNA coding for NMDA NR1 and NR2 subunits. Membrane currents induced by rapid application of agonists were recorded under two-electrode voltageclamp. Conantokins were bath-applied to give cumulative concentration responses. Spermine gave slightly different shifts in glutamate affinity when different NR1 splice variants were combined with NR2A subunits. In the presence of spermine, both an increase and a decrease in affinity for glutamate were seen with differing subunit combinations that could not be explained by the absence or presence of the N-terminal 23-amino-acid insert.