130 resultados para Mine drainage
Resumo:
Column leaching tests on black coal mine washery wastes were performed, to determine the chemistry of acid generation. Coal mine coarse rejects and tailings were subjected to wet and dry cycle dissolution and subsequently column leached. The rates of iron sulphide oxidation and carbonate mineral dissolution were determined based on the drainage chemistry. The kinetic data from column leach experiments are used to predict the time required to deplete the acid producing and acid consuming minerals in the mine wastes. The acid production in the mine rejects was found to depend upon iron chemistry, carbonate chemistry, diffusion of oxygen, and permeability. The chemistry of the drainage from two different coal mines is compared. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In this study, we investigated the size, submicrometer-scale structure, and aggregation state of ZnS formed by sulfate-reducing bacteria (SRB) in a SRB-dominated biofilm growing on degraded wood in cold (Tsimilar to8degreesC), circumneutral-pH (7.2-8.5) waters draining from an abandoned, carbonate-hosted Pb-Zn mine. High-resolution transmission electron microscope (HRTEM) data reveal that the earliest biologically induced precipitates are crystalline ZnS nanoparticles 1-5 nm in diameter. Although most nanocrystals have the sphalerite structure, nanocrystals of wurtzite are also present, consistent with a predicted size dependence for ZnS phase stability. Nearly all the nanocrystals are concentrated into 1-5 mum diameter spheroidal aggregates that display concentric banding patterns indicative of episodic precipitation and flocculation. Abundant disordered stacking sequences and faceted, porous crystal-aggregate morphologies are consistent with aggregation-driven growth of ZnS nanocrystals prior to and/or during spheroid formation. Spheroids are typically coated by organic polymers or associated with microbial cellular surfaces, and are concentrated roughly into layers within the biofilm. Size, shape, structure, degree of crystallinity, and polymer associations will all impact ZnS solubility, aggregation and coarsening behavior, transport in groundwater, and potential for deposition by sedimentation. Results presented here reveal nanometer- to micrometer-scale attributes of biologically induced ZnS formation likely to be relevant to sequestration via bacterial sulfate reduction (BSR) of other potential contaminant metal(loid)s, such as Pb2+, Cd2+, As3+ and Hg2+, into metal sulfides. The results highlight the importance of basic mineralogical information for accurate prediction and monitoring of long-term contaminant metal mobility and bioavailability in natural and constructed bioremediation systems. Our observations also provoke interesting questions regarding the role of size-dependent phase stability in biomineralization and provide new insights into the origin of submicrometer- to millimeter-scale petrographic features observed in low-temperature sedimentary sulfide ore deposits.
Resumo:
Novel, low-abundance microbial species can be easily overlooked in standard polymerase chain reaction (PCR)-based surveys. We used community genomic data obtained without PCR or cultivation to reconstruct DNA fragments bearing unusual 16S ribosomal RNA ( rRNA) and protein-coding genes from organisms belonging to novel archaeal lineages. The organisms are minor components of all biofilms growing in pH 0.5 to 1.5 solutions within the Richmond Mine, California. Probes specific for 16S rRNA showed that the fraction less than 0.45 micrometers in diameter is dominated by these organisms. Transmission electron microscope images revealed that the cells are pleomorphic with unusual folded membrane protrusions and have apparent volumes of < 0.006 cubic micrometer.
Metal and solute transportation through a wetland at a Lead Zinc Mine, Northern Territory, Australia
Resumo:
Four mine waste beach longitudinal profile equations are compared theoretically and in statistical analyses of profile data from 64 field and laboratory beaches formed by mine tailings, co-disposed coal mine wastes, and sand. All four equations fit the profile data well. The best performing equation both accounts for particle sorting and satisfies hydraulic constraints, and the combination of assumptions underlying it is considered to best represent the processes occurring on mine waste beaches. Combining these assumptions with the Lacey normal equation leads to a variant of the Manning resistance equation. Features that it is desirable to incorporate in theoretical and numerical models of mine waste beaches are listed.