86 resultados para Medical Informatics Computing
Resumo:
Interactive health communication using Internet technologies is expanding the range and flexibility of intervention and teaching options available in preventive medicine and the health sciences. Advantages of interactive health communication include the enhanced convenience, novelty, and appeal of computer-mediated communication; its flexibility and interactivity; and automated processing. We outline some of these fundamental aspects of computer-mediated communication as it applies to preventive medicine. Further, a number of key pathways of information technology evolution are creating new opportunities for the delivery of professional education in preventive medicine and other health domains, as well as for delivering automated, self-instructional health behavior-change programs through the Internet. We briefly describe several of these key evolutionary pathways, We describe some examples from work we have done in Australia. These demonstrate how we have creatively responded to the challenges of these new information environments, and how they may be pursued in the education of preventive medicine and other health care practitioners and in the development and delivery of health behavior change programs through the Internet. Innovative and thoughtful applications of this new technology can increase the consistency, reliability, and quality of information delivered.
Resumo:
We present a method of estimating HIV incidence rates in epidemic situations from data on age-specific prevalence and changes in the overall prevalence over time. The method is applied to women attending antenatal clinics in Hlabisa, a rural district of KwaZulu/Natal, South Africa, where transmission of HIV is overwhelmingly through heterosexual contact. A model which gives age-specific prevalence rates in the presence of a progressing epidemic is fitted to prevalence data for 1998 using maximum likelihood methods and used to derive the age-specific incidence. Error estimates are obtained using a Monte Carlo procedure. Although the method is quite general some simplifying assumptions are made concerning the form of the risk function and sensitivity analyses are performed to explore the importance of these assumptions. The analysis shows that in 1998 the annual incidence of infection per susceptible woman increased from 5.4 per cent (3.3-8.5 per cent; here and elsewhere ranges give 95 per cent confidence limits) at age 15 years to 24.5 per cent (20.6-29.1 per cent) at age 22 years and declined to 1.3 per cent (0.5-2.9 per cent) at age 50 years; standardized to a uniform age distribution, the overall incidence per susceptible woman aged 15 to 59 was 11.4 per cent (10.0-13.1 per cent); per women in the population it was 8.4 per cent (7.3-9.5 per cent). Standardized to the age distribution of the female population the average incidence per woman was 9.6 per cent (8.4-11.0 per cent); standardized to the age distribution of women attending antenatal clinics, it was 11.3 per cent (9.8-13.3 per cent). The estimated incidence depends on the values used for the epidemic growth rate and the AIDS related mortality. To ensure that, for this population, errors in these two parameters change the age specific estimates of the annual incidence by less than the standard deviation of the estimates of the age specific incidence, the AIDS related mortality should be known to within +/-50 per cent and the epidemic growth rate to within +/-25 per cent, both of which conditions are met. In the absence of cohort studies to measure the incidence of HIV infection directly, useful estimates of the age-specific incidence can be obtained from cross-sectional, age-specific prevalence data and repeat cross-sectional data on the overall prevalence of HIV infection. Several assumptions were made because of the lack of data but sensitivity analyses show that they are unlikely to affect the overall estimates significantly. These estimates are important in assessing the magnitude of the public health problem, for designing vaccine trials and for evaluating the impact of interventions. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
The World Wide Web (WWW) is useful for distributing scientific data. Most existing web data resources organize their information either in structured flat files or relational databases with basic retrieval capabilities. For databases with one or a few simple relations, these approaches are successful, but they can be cumbersome when there is a data model involving multiple relations between complex data. We believe that knowledge-based resources offer a solution in these cases. Knowledge bases have explicit declarations of the concepts in the domain, along with the relations between them. They are usually organized hierarchically, and provide a global data model with a controlled vocabulary, We have created the OWEB architecture for building online scientific data resources using knowledge bases. OWEB provides a shell for structuring data, providing secure and shared access, and creating computational modules for processing and displaying data. In this paper, we describe the translation of the online immunological database MHCPEP into an OWEB system called MHCWeb. This effort involved building a conceptual model for the data, creating a controlled terminology for the legal values for different types of data, and then translating the original data into the new structure. The 0 WEB environment allows for flexible access to the data by both users and computer programs.
Resumo:
A two-component survival mixture model is proposed to analyse a set of ischaemic stroke-specific mortality data. The survival experience of stroke patients after index stroke may be described by a subpopulation of patients in the acute condition and another subpopulation of patients in the chronic phase. To adjust for the inherent correlation of observations due to random hospital effects, a mixture model of two survival functions with random effects is formulated. Assuming a Weibull hazard in both components, an EM algorithm is developed for the estimation of fixed effect parameters and variance components. A simulation study is conducted to assess the performance of the two-component survival mixture model estimators. Simulation results confirm the applicability of the proposed model in a small sample setting. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
Background. Previous studies have indicated that Australian medical schools have not adequately prepared our graduating doctors to care for patients with cancer. The University of Western Australia (UWA) introduced a two-week clinical attachment in cancer medicine for fifth-year students in 2000 and a four-day clinical attachment in palliative care for sixth-year students in 2001. This article evaluates the introduction of these dedicated clinical attachments in cancer and palliative care. Method. The Australian Cancer Society's Cancer Education Survey was administered to the UWA graduates starting their intern year in teaching hospitals in Perth, Western Australia, in 2002. Their responses were compared with data collected in a similar national survey of Australian and New Zealand interns in 2001. Results. The response rate was 56% (n = 70). When compared with the national data for 2001, more UWA interns (2002) would refer a newly diagnosed breast cancer patient to a multidisciplinary breast clinic (97% vs. 74%, P<.001). Fewer UWA 2002 interns rated their training as poor or very poor in the management of patients with incurable cancer (19% vs. 35%, P=.008) and the management of symptoms in patients dying from cancer (10% vs. 37%, P<.001), but they were more likely to rate their training in assisting a patient to stop smoking as poor or very poor (54% vs. 21%, P<.001). Only a quarter of the UWA 2002 interns had examined a patient with a cancer of the mouth or tongue (25% vs. 49%, P<.001), and only two thirds had examined a patient with lymphoma (64% vs. 83%, P<.001). Conclusions. Our data reflect changes in the final two years of the medical course at UWA and suggest that the introduction of dedicated attachments in cancer and palliative care has better prepared graduating doctors to care for patients with cancer.
Resumo:
Analysis of a major multi-site epidemiologic study of heart disease has required estimation of the pairwise correlation of several measurements across sub-populations. Because the measurements from each sub-population were subject to sampling variability, the Pearson product moment estimator of these correlations produces biased estimates. This paper proposes a model that takes into account within and between sub-population variation, provides algorithms for obtaining maximum likelihood estimates of these correlations and discusses several approaches for obtaining interval estimates. (C) 1997 by John Wiley & Sons, Ltd.
Resumo:
A mixture model incorporating long-term survivors has been adopted in the field of biostatistics where some individuals may never experience the failure event under study. The surviving fractions may be considered as cured. In most applications, the survival times are assumed to be independent. However, when the survival data are obtained from a multi-centre clinical trial, it is conceived that the environ mental conditions and facilities shared within clinic affects the proportion cured as well as the failure risk for the uncured individuals. It necessitates a long-term survivor mixture model with random effects. In this paper, the long-term survivor mixture model is extended for the analysis of multivariate failure time data using the generalized linear mixed model (GLMM) approach. The proposed model is applied to analyse a numerical data set from a multi-centre clinical trial of carcinoma as an illustration. Some simulation experiments are performed to assess the applicability of the model based on the average biases of the estimates formed. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
This paper explores an approach to the implementation and evaluation of integrated health service delivery. It identifies the key issues involved in integration evaluation, provides a framework for assessment and identifies areas for the development of new tools and measures. A proactive role for evaluators in responding to health service reform is advocated.
Resumo:
Neurological disease or dysfunction in newborn infants is often first manifested by seizures. Prolonged seizures can result in impaired neurodevelopment or even death. In adults, the clinical signs of seizures are well defined and easily recognized. In newborns, however, the clinical signs are subtle and may be absent or easily missed without constant close observation. This article describes the use of adaptive signal processing techniques for removing artifacts from newborn electroencephalogram (EEG) signals. Three adaptive algorithms have been designed in the context of EEG signals. This preprocessing is necessary before attempting a fine time-frequency analysis of EEG rhythmical activities, such as electrical seizures, corrupted by high amplitude signals. After an overview of newborn EEG signals, the authors describe the data acquisition set-up. They then introduce the basic physiological concepts related to normal and abnormal newborn EEGs and discuss the three adaptive algorithms for artifact removal. They also present time-frequency representations (TFRs) of seizure signals and discuss the estimation and modeling of the instantaneous frequency related to the main ridge of the TFR.
Resumo:
We consider a mixture model approach to the regression analysis of competing-risks data. Attention is focused on inference concerning the effects of factors on both the probability of occurrence and the hazard rate conditional on each of the failure types. These two quantities are specified in the mixture model using the logistic model and the proportional hazards model, respectively. We propose a semi-parametric mixture method to estimate the logistic and regression coefficients jointly, whereby the component-baseline hazard functions are completely unspecified. Estimation is based on maximum likelihood on the basis of the full likelihood, implemented via an expectation-conditional maximization (ECM) algorithm. Simulation studies are performed to compare the performance of the proposed semi-parametric method with a fully parametric mixture approach. The results show that when the component-baseline hazard is monotonic increasing, the semi-parametric and fully parametric mixture approaches are comparable for mildly and moderately censored samples. When the component-baseline hazard is not monotonic increasing, the semi-parametric method consistently provides less biased estimates than a fully parametric approach and is comparable in efficiency in the estimation of the parameters for all levels of censoring. The methods are illustrated using a real data set of prostate cancer patients treated with different dosages of the drug diethylstilbestrol. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
Cluster analysis via a finite mixture model approach is considered. With this approach to clustering, the data can be partitioned into a specified number of clusters g by first fitting a mixture model with g components. An outright clustering of the data is then obtained by assigning an observation to the component to which it has the highest estimated posterior probability of belonging; that is, the ith cluster consists of those observations assigned to the ith component (i = 1,..., g). The focus is on the use of mixtures of normal components for the cluster analysis of data that can be regarded as being continuous. But attention is also given to the case of mixed data, where the observations consist of both continuous and discrete variables.
Resumo:
Purpose: The aim of this project was to design and evaluate a system that would produce tailored information for stroke patients and their carers, customised according to their informational needs, and facilitate communication between the patient and, health professional. Method: A human factors development approach was used to develop a computer system, which dynamically compiles stroke education booklets for patients and carers. Patients and carers are able to select the topics about which they wish to receive information, the amount of information they want, and the font size of the printed booklet. The system is designed so that the health professional interacts with it, thereby providing opportunities for communication between the health professional and patient/carer at a number of points in time. Results: Preliminary evaluation of the system by health professionals, patients and carers was positive. A randomised controlled trial that examines the effect of the system on patient and carer outcomes is underway. (C) 2004 Elsevier Ireland Ltd. All rights reserved.
Resumo:
We present two methods of estimating the trend, seasonality and noise in time series of coronary heart disease events. In contrast to previous work we use a non-linear trend, allow multiple seasonal components, and carefully examine the residuals from the fitted model. We show the importance of estimating these three aspects of the observed data to aid insight of the underlying process, although our major focus is on the seasonal components. For one method we allow the seasonal effects to vary over time and show how this helps the understanding of the association between coronary heart disease and varying temperature patterns. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
In large epidemiological studies missing data can be a problem, especially if information is sought on a sensitive topic or when a composite measure is calculated from several variables each affected by missing values. Multiple imputation is the method of choice for 'filling in' missing data based on associations among variables. Using an example about body mass index from the Australian Longitudinal Study on Women's Health, we identify a subset of variables that are particularly useful for imputing values for the target variables. Then we illustrate two uses of multiple imputation. The first is to examine and correct for bias when data are not missing completely at random. The second is to impute missing values for an important covariate; in this case omission from the imputation process of variables to be used in the analysis may introduce bias. We conclude with several recommendations for handling issues of missing data. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
The use of a fully parametric Bayesian method for analysing single patient trials based on the notion of treatment 'preference' is described. This Bayesian hierarchical modelling approach allows for full parameter uncertainty, use of prior information and the modelling of individual and patient sub-group structures. It provides updated probabilistic results for individual patients, and groups of patients with the same medical condition, as they are sequentially enrolled into individualized trials using the same medication alternatives. Two clinically interpretable criteria for determining a patient's response are detailed and illustrated using data from a previously published paper under two different prior information scenarios. Copyright (C) 2005 John Wiley & Sons, Ltd.