50 resultados para Linear operators
Resumo:
Sensitivity of output of a linear operator to its input can be quantified in various ways. In Control Theory, the input is usually interpreted as disturbance and the output is to be minimized in some sense. In stochastic worst-case design settings, the disturbance is considered random with imprecisely known probability distribution. The prior set of probability measures can be chosen so as to quantify how far the disturbance deviates from the white-noise hypothesis of Linear Quadratic Gaussian control. Such deviation can be measured by the minimal Kullback-Leibler informational divergence from the Gaussian distributions with zero mean and scalar covariance matrices. The resulting anisotropy functional is defined for finite power random vectors. Originally, anisotropy was introduced for directionally generic random vectors as the relative entropy of the normalized vector with respect to the uniform distribution on the unit sphere. The associated a-anisotropic norm of a matrix is then its maximum root mean square or average energy gain with respect to finite power or directionally generic inputs whose anisotropy is bounded above by a≥0. We give a systematic comparison of the anisotropy functionals and the associated norms. These are considered for unboundedly growing fragments of homogeneous Gaussian random fields on multidimensional integer lattice to yield mean anisotropy. Correspondingly, the anisotropic norms of finite matrices are extended to bounded linear translation invariant operators over such fields.
Resumo:
We study the scattering of the quantized electromagnetic field from a linear, dispersive dielectric using the scattering formalism for quantum fields. The medium is modeled as a collection of harmonic oscillators with a number of distinct resonance frequencies. This model corresponds to the Sellmeir expansion, which is widely used to describe experimental data for real dispersive media. The integral equation for the interpolating field in terms of the in field is solved and the solution used to find the out field. The relation between the ill and out creation and annihilation operators is found that allows one to calculate the S matrix for this system. In this model, we find that there are absorption bands, but the input-output relations are completely unitary. No additional quantum-noise terms are required.
Resumo:
Quantum computers promise to increase greatly the efficiency of solving problems such as factoring large integers, combinatorial optimization and quantum physics simulation. One of the greatest challenges now is to implement the basic quantum-computational elements in a physical system and to demonstrate that they can be reliably and scalably controlled. One of the earliest proposals for quantum computation is based on implementing a quantum bit with two optical modes containing one photon. The proposal is appealing because of the ease with which photon interference can be observed. Until now, it suffered from the requirement for non-linear couplings between optical modes containing few photons. Here we show that efficient quantum computation is possible using only beam splitters, phase shifters, single photon sources and photo-detectors. Our methods exploit feedback from photo-detectors and are robust against errors from photon loss and detector inefficiency. The basic elements are accessible to experimental investigation with current technology.
Resumo:
Four adducts of triphenylphosphine oxide with aromatic carboxylic acids have been synthesized and tested for second-order non-linear optical properties. These were with N-methylpyrrole-2-carboxylic acid (I), indole-2-carboxylic acid (2), 3-dimethylaminobenzoic acid (3), and thiophen-2-carboxylic acid (4). Compound (1) produced clear, colourless crystals (space group P2(1)2(1)2(1) With a 9.892(1), b 14.033(1), c 15.305(1) Angstrom, Z 4) which allowed the structure to be determined by X-ray diffraction.
Resumo:
The linearity of daily linear harvest index (HI) increase can provide a simple means to predict grain growth and yield in field crops. However, the stability of the rate of increase across genotypes and environments is uncertain. Data from three field experiments were collated to investigate the phase of linear HI increase of sunflower (Helianthus annuus L,) across environments by changing genotypes, sowing time, N level, and solar irradiation level. Linear increase in HI was similar among different genotypes, N levels, and radiation treatments (mean 0.0125 d(-1)). but significant differences occurred between sowings, The linear increase in HI was not stable at very low temperatures (down to 9 degrees C) during grain filling, due to possible limitations to biomass accumulation and translocation (mean 0.0091 d(-1)). Using the linear increase in HI to predict grain yield requires predictions of the duration from anthesis to the onset of linear HI increase (lag phase) and the cessation of linear RT increase. These studies showed that the lag phase differed, and the linear HI increase ceased when 91% of the anthesis to physiological maturity period had been completed.
Resumo:
A full set of Casimir operators for the Lie superalgebra gl(m/infinity) is constructed and shown to be well defined in the category O-FS generated by the highest-weight irreducible representations with only a finite number of non-zero weight components. The eigenvalues of these Casimir operators are determined explicitly in terms of the highest weight. Characteristic identities satisfied by certain (infinite) matrices with entries from gl(m/infinity) are also determined.
Resumo:
We consider the effect of quantum spin fluctuations on the ground-state properties of the Heisenberg antiferromagnet on an anisotropic triangular lattice using linear spin-wave (LSW) theory. This model should describe the magnetic properties of the insulating phase of the kappa-(BEDT-TTF)(2)X family of superconducting molecular crystals. The ground-state energy, the staggered magnetization, magnon excitation spectra, and spin-wave velocities are computed as functions of the ratio of the antiferromagnetic exchange between the second and first neighbours, J(2)/J(1). We find that near J(2)/J(1) = 0.5, i.e., in the region where the classical spin configuration changes from a Neel-ordered phase to a spiral phase, the staggered magnetization vanishes, suggesting the possibility of a quantum disordered state. in this region, the quantum correction to the magnetization is large but finite. This is in contrast to the case for the frustrated Heisenberg model on a square lattice, for which the quantum correction diverges logarithmically at the transition from the Neel to the collinear phase. For large J(2)/J(1), the model becomes a set of chains with frustrated interchain coupling. For J(2) > 4J(1), the quantum correction to the magnetization, within LSW theory, becomes comparable to the classical magnetization, suggesting the possibility of a quantum disordered state. We show that, in this regime, the quantum fluctuations are much larger than for a set of weakly coupled chains with non-frustrated interchain coupling.
Resumo:
We study the spin-1/2 Heisenberg models on an anisotropic two-dimensional lattice which interpolates between the square lattice at one end, a set of decoupled spin chains on the other end, and the triangular-lattice Heisenberg model in between. By series expansions around two different dimer ground states and around various commensurate and incommensurate magnetically ordered states, we establish the phase diagram for this model of a frustrated antiferromagnet. We find a particularly rich phase diagram due to the interplay of magnetic frustration, quantum fluctuations, and varying dimensionality. There is a large region of the usual two-sublattice Neel phase, a three-sublattice phase for the triangular-lattice model, a region of incommensurate magnetic order around the triangular-lattice model, and regions in parameter space where there is no magnetic order. We find that the incommensurate ordering wave vector is in general altered from its classical value by quantum fluctuations. The regime of weakly coupled chains is particularly interesting and appears to be nearly critical. [S0163-1829(99)10421-1].
Resumo:
We study the level-one irreducible highest weight representations of U-q[gl(1\1)] and associated q-vertex operators. We obtain the exchange relations satisfied by these vertex operators. The characters and supercharacters associated with these irreducible representations are calculated'. (C) 2000 Published by Elsevier Science B.V. All rights reserved.
Resumo:
Australia's Great Barrier Reef is one of the world's most popular scuba diving destinations. Unfortunately, a series of recent diving injuries and deaths has tarnished the region's safety record. In particular, media attention surrounding the disappearance of American divers Thomas and Eileen Lonergan has focused attention on dive operators' legal responsibilities and the consequences of failing to discharge their duty of care to customers. This paper briefly examines the relevant Australian law for recreational diving operations, and reviews risk management strategies that may reduce or prevent the occurrence of future problems. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Bosonized q-vertex operators related to the four-dimensional evaluation modules of the quantum affine superalgebra U-q[sl((2) over cap\1)] are constructed for arbitrary level k=alpha, where alpha not equal 0,-1 is a complex parameter appearing in the four-dimensional evaluation representations. They are intertwiners among the level-alpha highest weight Fock-Wakimoto modules. Screen currents which commute with the action of U-q[sl((2) over cap/1)] up to total differences are presented. Integral formulas for N-point functions of type I and type II q-vertex operators are proposed. (C) 2000 American Institute of Physics. [S0022-2488(00)00608-3].