18 resultados para Iron mines and mining
Resumo:
A novel nanocomposite of iron oxide and silicate, prepared through a reaction between a solution of iron salt and a dispersion of Laponite clay, was used as a catalyst for the photoassisted Fenton degradation of azo-dye Orange II. This catalyst is much cheaper than the Nafion-based catalysts, and our results illustrate that it can significantly accelerate the degradation of Orange II under the irradiation of UV light (lambda = 254 nm). An advantage of the catalyst is its long-term stability that was confirmed through using the catalyst for multiple runs in the degradation of Orange II. The effects of the H2O2 molar concentration, solution pH, wavelength and power of the LTV light, catalyst loading, and initial Orange II concentration on the degradation of Orange 11 were studied in detail. In addition, it was also found that discoloration of Orange 11 undergoes a faster kinetics than mineralization of Orange II and 75% total organic carbons of 0.1 mM Orange II can be eliminated after 90 min in the presence of 1.0 g of Fe-nanocomposite/L, 4.8 mM H2O2, and 1 x 8W UVC.
Resumo:
The phase equilibria in the FeO-Fe2O3-ZnO system have been experimentally investigated at oxygen partial pressures between metallic iron saturation and air using a specially developed quenching technique, followed by electron probe X-ray microanalysis (EPMA) and then wet chemistry for determination of ferrous and ferric iron concentrations. Gas mixtures of H-2, N-2, and CO2 or CO and CO2 controlled the atmosphere in the furnace. The determined metal cation ratios in phases at equilibrium were used for the construction of the 1200 degrees C isothermal section of the Fe-Zn-O system. The univariant equilibria between the gas phase, spinel, wustite, and zincite was found to be close to pO(2) = 1 center dot 10(-8) atm at 1200 degrees C. The ferric and ferrous iron concentrations in zincite and spinel at equilibrium were also determined at temperatures from 1200 degrees C to 1400 degrees C at pO(2) = 1 center dot 10(-6) atm and at 1200 degrees C at pO(2) values ranging from 1 center dot 10(-4) to 1 center dot 10(-8) atm. Implications of the phase equilibria in the Fe-Zn-O system for the formation of the platelike zincite, especially important for the Imperial Smelting Process (ISP), are discussed.
Resumo:
The free-ion model (FIM) describes iron ( Fe) uptake by barley [ Hordeum vulgare ( L.) 'Grammett'] as being controlled by the activity of the buffered, free, uncomplexed Fe3+ in solution. Chelators' effect on Fe uptake by barley was evaluated and the rate of exchange of Fe between chelators was examined. Barley was grown for two weeks in a low-Fe nutrient solution and transferred to solutions varying in Fe and chelators for 6 h assays. Shoot Fe-59 was higher in barley grown in citrate (7743 and 1928 Fe-59 Bq g(-1)) than in NTA(3220 and 1113 Fe-59 Bq g(-1); P = 0.045) despite similar free-Fe3+ activities. A comparison of Fe uptake by barley from solutions with pFe(3+) activities of 17.1 and 24.6 showed < 5% was from indiscriminate apoplastic-flow uptake (3250 Fe-59 Bq g(-1) vs. 160 Fe-59 Bq g(-1)). Using nutrient solutions from the barley studies but without plants, Fe exchange between chelators and a simulant for the barley phytosiderophore occurred within hours ( for NTA and citrate), or days ( EDTA and HEDTA). Results were similar between the barley and Fe-exchange experiments for the two nutrient-solution treatments where the same Fe3+ activities but different total-Fe concentrations were used: the higher total-Fe treatment resulted in six-fold higher shoot Fe-59, while in the Fe-exchange study that treatment had six-fold more Fe bound to the phytosiderophore simulant after 2 d. Results indicated deviations from the FIM were not explained by indiscriminate-flow uptake, and that sluggish Fe-exchange reactions between chelate and phytosiderophoresimulant, not FIM guidelines, may be more important in explaining Fe uptake from synthetic chelates by Fe-deficient barley.
Resumo:
Sand-cast plates were used to determine the effect of iron and manganese concentrations on porosity levels in Al-9 pet Si-0.5 pet Mg alloys. Iron increased porosity levels. Manganese additions increased porosity levels in alloys with 0.1 pet Fe, but reduced porosity in alloys with 0.6 and I pet Fe. Thermal analysis and quenching were undertaken to determine the effect of iron and manganese on the solidification of the Al-Si eutectic. At high iron levels, the presence of large beta-Al5FeSi was found to reduce the number of eutectic nucleation events and increase the eutectic grain size. The preferential formation of alpha-Al15Mn3Si2 upon addition of manganese reversed these effects. It is proposed that this interaction is due to beta-Al5FeSi and the Al-Si eutectic having common nuclei. Porosity levels are proposed to be controlled by the eutectic grain size and the size of the iron-bearing intermetallic particles rather than the specific intermetallic phase that forms.