80 resultados para Invertebrates, Fossil
Resumo:
Fertilisation of eggs of free-spawning marine invertebrates depends on factors affecting sperm concentration in the field and also on gamete characteristics such as egg size. In the free-spawning intertidal ascidian Pyura stolonifera mean egg size increased with maternal size in 2 separate populations. The largest ascidian produced eggs that were, on average, 50% greater in volume than the eggs produced by the smallest individual studied. There was no evidence to suggest that egg density varied with adult size and egg dry organic weight increased with maternal size. The fertilisation kinetics of this species were strongly affected by the variation in egg size, with the eggs of large individuals requiring much less concentrated sperm to achieve maximal levels of fertilisation success than the eggs of small individuals. We suggest that variation in egg size between individuals of different sizes and ages may be an important factor in determining fertilisation success for ascidians of this species.
Resumo:
The provisioning of offspring can have far-reaching consequences for later life in a wide range of organisms and generally this provisioning is thought to be under maternal influence or control. In experiments with a broadcast-spawning ascidian, we found that the size of offspring was determined by egg size and the abundance of sperm present during fertilization. Larger eggs were fertilized at low sperm concentrations, whilst smaller eggs were successfully fertilized at high sperm concentrations. These differences in fertilized egg size resulted in differences in the development rate, hatching success and mean size of the subsequent larvae. Our results suggest that, in contrast to females that reproduce by other mating systems, free-spawning mothers lack some control over the provisioning of offspring. Furthermore, because males can alter the sperm environment, they can exert paternal (non-genetic) control over key offspring characteristics.
Resumo:
There has been growing interest in the effects of variation in larval quality on the post-larval performance of adult marine invertebrates. Variation in egg/larval size is an obvious source of variation in larval quality but sources of variation have received little attention. For broadcast spawners, larval size may vary according to the local sperm environment but the generality of this result is unclear. Here, we show that, for a solitary ascidian, a polychaete and an echinoid, larval size is affected by the concentration of sperm present during fertilization. Larvae that are produced at high sperm concentrations are smaller than larvae that are produced from eggs exposed to low sperm concentrations. We also show that for three ascidians and an asteroid, egg size increases with maternal body size. These differences in larval size are likely to affect larval and subsequent adult performance in the field. Given that sperm concentrations in the field can fluctuate widely, it is likely that larval quality in free-spawning marine invertebrates will also vary widely.
Resumo:
In marine invertebrates, the larval and adult stages of many species are often ecologically distinct and as consequence these stages have been traditionally been viewed as physiologically separate. More recently, we have begun to recognize that metamorphosis does not represent a new beginning and events during the larval stage can influence adult performance. I will discuss recent work that suggests that the links between life-history stages are even more pervasive than we currently appreciate. For several species of marine invertebrate, I have found that events during one generation can strongly affect performance in the subsequent generation and events during the haploid phase can affect performance in the diploid phase. All of these links are mediated by changes in offspring size or offspring quality. I will discuss the implication of these strong links for the way we view the ecology of marine invertebrates and the evolution of offspring size in this group.
Resumo:
Traumatic injury to the dentition of dipnoans, indirectly as a result of jaw fracture, or directly from damage to the tooth tissues, is present throughout the history of this group, in fossil and in Recent material. Bones heal, but traces of the injury are retained in the tooth tissues, permanently if the proliferative regions of the tooth plate are injured, or until the damaged dentines are removed by wear if the growing regions are left intact. Lack of resorption and repair of damaged dental hard tissues in dipnoans has implications for some models of tooth plate growth in lungfish with a permanent dentition, because this indicates that lungfish tooth plates may not have the capacity to form reparative dentine as part of the normal growth processes.
Resumo:
It has been established that large numbers of certain trees can survive in the beds of rivers of northeastern Australia where a strongly seasonal distribution of precipitation causes extreme variations in flow on both a yearly and longer-term basis. In these rivers, minimal flow occurs throughout much of any year and for periods of up to several years, allowing the trees to become established and to adapt their form in order to facilitate their survival in environments that experience periodic inundation by fast-flowing, debris-laden water. Such trees (notably paperbark trees of the angiosperm genus Melaleuca) adopt a reclined to prostrate, downstream-trailing habit, have a multiple-stemmed form, modified crown with weeping foliage, development of thick, spongy bark, anchoring of roots into firm to lithified substrates beneath the channel floor, root regeneration, and develop in flow-parallel, linear groves. Individuals from within flow-parallel, linear groves are preserved in situ within the alluvial deposit of the river following burial and death. Four examples of in situ tree fossils within alluvial channel deposits in the Permian of eastern Australia demonstrate that specialised riverbed plant communities also existed at times in the geological past. These examples, from the Lower Permian Carmila Beds, Upper Permian Moranbah Coal Measures and Baralaba Coal Measures of central Queensland and the Upper Permian Newcastle Coal Measures of central New South Wales, show several of the characteristics of trees described from modern rivers in northeastern Australia, including preservation in closely-spaced groups. These properties, together with independent sedimentological evidence, suggest that the Permian trees were adapted to an environment affected by highly variable runoff, albeit in a more temperate climatic situation than the modem Australian examples. It is proposed that occurrences of fossil trees preserved in situ within alluvial channel deposits may be diagnostic of environments controlled by seasonal and longer-term variability in fluvial runoff, and hence may have value in interpreting aspects of palaeoclimate from ancient alluvial successions. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We use a stochastic patch occupancy model of invertebrates in the Mound Springs ecosystem of South Australia to assess the ability of incidence function models to detect environmental impacts on metapopulations. We assume that the probability of colonisation decreases with increasing isolation and the probability of extinction is constant across spring vents. We run the models to quasi-equilibrium, and then impose an impact by increasing the local extinction probability. We sample the output at various times pre- and postimpact, and examine the probability of detecting a significant change in population parameters. The incidence function model approach turns out to have little power to detect environmental impacts on metapopulations with small numbers of patches. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
New Zealand is generally thought to have been physically isolated from the rest of the world for over 60 million years. But physical isolation may not mean biotic isolation, at least on the time scale of millions of years. Are New Zealand's present complement of plants the direct descendants of what originally rafted from Gondwana? Or has there been total extinction of this initial flora with replacement through long-distance dispersal (a complete biotic turnover)? These are two possible extremes which have come under recent discussion. Can the fossil record be used to decide the relative importance of the two endpoints, or is it simply too incomplete and too dependent on factors of chance? This paper suggests two approaches to the problem-the use of statistics to apply levels of confidence to first appearances in the fossil record and the analysis of trends based on the entire palynorecord. Statistics can suggest that the first appearance of a taxon was after New Zealand broke away from Gondwana-as long as the first appearance in the record was not due to an increase in biomass from an initially rare state. Two observations can be drawn from the overall palynorecord that are independent of changes in biomass: (1) The first appearance of palynotaxa common to both Australia and New Zealand is decidedly non-random. Most taxa occur first in Australia. This suggests a bias in air or water transport from west to east. (2) The percentage of endemic palynospecies in New Zealand shows no simple correlation with the time New Zealand drifted into isolation. The conifer macrorecord also hints at complete turnover since the Cretaceous.
Resumo:
During the Middle Jurassic, the regional environment of Curio Bay, southeast South Island, New Zealand, was a fluvial plain marginal to volcanic uplands. Intermittent flashy, poorly-confined flood events buried successive conifer forests. With the termination of each flood, soils developed and vegetation was reestablished. In most cases, this developed into coniferous forest. In approximately 40 m of vertical section, 10 fossil forest horizons can be distinguished, highlighting a type of fluvial architecture which is poorly documented. Flood-basin material is minimal, but a short-Lived floodbasin lake is inferred to have developed within the interval of study. Paleocurrent indicators suggest enclosure of the basin on more than one side. Sedimentation style suggests a relatively dry (less than humid but not arid) climate with seasonal rainfall. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
delta(15)N signatures of fossil peat were used to interpret past ecosystem processes on tectonically active subantarctic Macquarie Island. By comparing past vegetation reconstructed from the fossil record with present-day vegetation analogues, our evidence strongly suggests that changes in the delta(15)N signatures of fossil peat at this location reflect mainly past changes in the proportion of plant nitrogen derived from animal sources. Associated with uplift above sea level over the past 8,500 years, fossil records in two peat deposits on the island chronicle a change from coastal vegetation with fur and elephant seal disturbance to the existing inland herbfield. Coupled with this change are synchronous changes in the delta(15)N signatures of peat layers. At two sites N-15-enriched peat delta(15)N signatures of up to +17parts per thousand were associated with a high abundance of pollen of the nitrophile Callitriche antarctica (Callitrichaceae). At one site fossil seal hair was also associated with enriched peat delta(15)N. Less N-15 enriched delta(15)N signatures (e.g. -1.9parts per thousand to +3.9parts per thousand) were measured in peat layers which lacked animal associated C. antarctica and Acaena spp. Interpretation of a third peat profile indicates continual occupation of a ridge site by burrowing petrels for most of the Holocene. We suggest that N-15 signatures of fossil peat remained relatively stable with time once deposited, providing a significant new tool for interpreting the palaeoecology.
Resumo:
The first chordates appear in the fossil record at the time of the Cambrian explosion, nearly 550 million years ago. The modern ascidian tadpole represents a plausible approximation to these ancestral chordates. To illuminate the origins of chordate and vertebrates, we generated a draft of the protein-coding portion of the genome of the most studied ascidian, Ciona intestinalis. The Ciona genome contains similar to16,000 protein-coding genes, similar to the number in other invertebrates, but only half that found in vertebrates. Vertebrate gene families are typically found in simplified form in Ciona, suggesting that ascidians contain the basic ancestral complement of genes involved in cell signaling and development. The ascidian genome has also acquired a number of lineage-specific innovations, including a group of genes engaged in cellulose metabolism that are related to those in bacteria and fungi.
Resumo:
This study (1) investigated functional (capture rate, foraging success) and numerical (density) responses of bar-tailed godwits Limosa lapponica to an experimental decrease in densities of their prey, and (2) estimated seasonal depletion of the stock of their main prey, the mictyrid crab Mictyris longicarpus, in a subtropical estuary. It was predicted that if intake rates of the godwits are in the vicinity of the gradient section of a functional response curve, i.e. are directly determined by prey density, they will respond rapidly to experimental reduction in the density of their prey. Bar-tailed godwits did respond rapidly, both functionally and numerically, to a decrease in the density of M longicarpus, indicating that their intake rate was limited by food availability. The estimated seasonal depletion of the stocks of Mictyris by the godwits was 88 % of the initial standing stock. Despite the virtual disappearance of Mictyris from sediment samples through the course of a non-breeding season, local densities of godwits did not change between October and March, implying that adequate rates of intake could be maintained throughout their residence period.
Resumo:
Annonaceae and Myristicaceae, the two largest families of Magnoliales, are pantropical groups of uncertain geographic history. The most recent morphological and molecular phylogenetic analyses identify the Asian-American genus Anaxagorea as sister to all other Annonaceae and the ambavioids, consisting of small genera endemic to South America, Africa, Madagascar, and Asia, as a second branch. However, most genera form a large clade in which the basal lines are African, and South American and Asian taxa are more deeply nested. Although it has been suggested that Anaxagorea was an ancient Laurasian line, present data indicate that this genus is basically South American. These considerations may mean that the family as a whole began its radiation in Africa and South America in the Late Cretaceous, when the South Atlantic was narrower, and several lines dispersed from Africa-Madagascar into Laurasia as the Tethys closed in the Tertiary. This scenario is consistent with the occurrence of annonaceous seeds in the latest Cretaceous of Nigeria and the Eocene of England and with molecular dating of the family. Based on distribution of putatively primitive taxa in Madagascar and derived taxa in Asia, it has been suggested that Myristicaceae had a similar history. Phylogenetic analyses of Myristicaceae, using morphology and several plastid regions, confirm that the ancestral area was Africa-Madagascar and that Asian taxa are derived. However, Myristicaceae as a whole show strikingly lower molecular divergence than Annonaceae, indicating either a much younger age or a marked slowdown in molecular evolution. The fact that the oldest diagnostic fossils of Myristicaceae are Miocene seeds might be taken as evidence that Myristicaceae are much younger than Annonaceae, but this is implausible in requiring transoceanic dispersal of their large, animal-dispersed seeds.