189 resultados para Introduced Pest
Resumo:
Introduced species are an increasingly pervasive problem. While studies on the ecology and behavior of these pests are numerous, there is relatively little known of their physiology, specifically their reproductive and stress physiology. One of the best documented introduced pest species is the brown tree snake, Boiga irregularis, which was introduced onto the Pacific island of Guam sometime around World War II. The snake is responsible for severely reducing Guam's native vertebrates. We captured free-living individuals throughout the year and measured plasma levels of stress and sex hormones in an effort to determine when they were breeding. These data were compared to reproductive cycles from a captive population originally collected from Guam. Free-living individuals had chronically elevated plasma levels of the stress hormone corticosterone and basal levels of sex steroids and a remarkably low proportion were reproductively active. These data coincide with evidence that the wild population may be in decline. Captive snakes, had low plasma levels of corticosterone with males displaying a peak in plasma testosterone levels during breeding. Furthermore, we compared body condition between the free-living and captive snakes from Guam and free-living individuals captured from their native range in Australia. Male and female free-living snakes from Guam exhibited significantly reduced body condition compared to free-living individuals from Australia. We suggest that during the study period, free-living brown tree snakes on Guam were living under stressful conditions, possibly due to overcrowding and overexploitation. of food resources, resulting in decreased body condition and suppressed reproduction. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
In the present paper, we have provided an initial assessment of the current and future threats to biodiversity posed by introduced mammals (predators and herbivores) inhabiting the Australian rangelands, exploring trends in populations and options for management. Notably, rabbits have declined in recent years in the wake of rabbit haemorrhagic disease, populations of feral camels have increased dramatically and foxes appear to have moved northwards, thereby threatening native fauna within an expanded range. Following on, we developed a framework for monitoring the impacts of introduced mammals in the Australian rangelands. In doing so, we considered the key issues that needed to be considered in designing a monitoring programme for this purpose and critically evaluated the role of monitoring in pest animal management. Finally we have provided a brief inventory of current best-practice methods of estimating the abundance of introduced mammal populations in the Australian rangelands with some comments on new approaches and their potential applications.
Resumo:
Maximizing the contribution of endemic natural enemies to integrated pest management (IPM) programs requires a detailed knowledge of their interactions with the target pest. This experimental field study evaluated the impact of the endemic natural enemy complex of Plutella xylostella (L.) (Lepidoptera: Yponomeutidae) on pest populations in commercial cabbage crops in southeastern Queensland, Australia. Management data were used to score pest management practices at experimental sites on independent Brassica farms practicing a range of pest management strategies, and mechanical methods of natural enemy exclusion were used to assess the impact of natural enemies on introduced cohorts of P. xylostella at each site. Natural enemy impact was greatest at sites adopting IPM and least at sites practicing conventional pest management strategies. At IPM sites, the contribution of natural enemies to P. xylostella mortality permitted the cultivation of marketable crops with no yield loss but with a substantial reduction in insecticide inputs. Three species of larval parasitoids (Diadegma semiclausum Hellen [Hymenoptera: Ichneumonidae], Apanteles ippeus Nixon [Hymenoptera: Braconidae], and Oomyzus sokolowskii Kurdjumov [Hymenoptera: Eulophidae]) and one species of pupal parasitoid Diadromus collaris Gravenhorst (Hymenoptera: Ichneumonidae) attacked immature P. xylostella. The most abundant groups of predatory arthropods caught in pitfall traps were Araneae (Lycosidae) > Coleoptera (Carabidae, Coccinelidae, Staphylinidae) > Neuroptera (Chrysopidae) > Formicidae, whereas on crop foliage Araneae (Clubionidae, Oxyopidae) > Coleoptera (Coccinelidae) > Neuroptera (Chrysopidae) were most common. The abundance and diversity of natural enemies was greatest at sites that adopted IPM, correlating greater P. xylostella mortality at these sites. The efficacy of the natural enemy complex to pest mortality under different pest management regimes and appropriate strategies to optimize this important natural resource are discussed.
Resumo:
1. The spatial and temporal distribution of eggs laid by herbivorous insects is a crucial component of herbivore population stability, as it influences overall mortality within the population. Thus an ecologist studying populations of an endangered butterfly can do little to increase its numbers through habitat management without knowledge of its egg-laying patterns across individual host-plants under different habitat management regimes. At the other end of the spectrum, a knowledge of egg-laying behaviour can do much to control pest outbreaks by disrupting egg distributions that lead to rapid population growth. 2. The distribution of egg batches of the processionary caterpillar Ochrogaster lunifer on acacia trees was monitored in 21 habitats during 2 years in coastal Australia. The presence of egg batches on acacias was affected by host-tree 'quality' (tree size and foliar chemistry that led to increased caterpillar survival) and host-tree 'apparency' (the amount of vegetation surrounding host-trees). 3. In open homogeneous habitats, more egg batches were laid on high-quality trees, increasing potential population growth. In diverse mixed-species habitats, more egg batches were laid on low-quality highly apparent trees, reducing population growth and so reducing the potential for unstable population dynamics. The aggregation of batches on small apparent trees in diverse habitats led to outbreaks on these trees year after year, even when population levels were low, while site-wide outbreaks were rare. 4. These results predict that diverse habitats with mixed plant species should increase insect aggregation and increase population stability. In contrast, in open disturbed habitats or in regular plantations, where egg batches are more evenly distributed across high-quality hosts, populations should be more unstable, with site-wide outbreaks and extinctions being more common. 5. Mixed planting should be used on habitat regeneration sites to increase the population stability of immigrating or reintroduced insect species. Mixed planting also increases the diversity of resources, leading to higher herbivore species richness. With regard to the conservation of single species, different practices of habitat management will need to be employed depending on whether a project is concerned with methods of rapidly increasing the abundance of an endangered insect or concerned with the maintenance of a stable, established insect population that is perhaps endemic to an area. Suggestions for habitat management in these different cases are discussed. 6. Finally, intercropping can be highly effective in reducing pest outbreaks, although the economic gains of reduced pest attack may be outweighed by reduced crop yields in mixed-crop systems.
Resumo:
A survey of the floors of 3001 empty sea cargo containers in storage was undertaken to estimate the quarantine risk of importing exotic insect pests into Australia, with special reference to pests of timber. More than 7400 live and dead insects were collected from 1174 containers. No live infestations of timber-feeding insects were recorded, but feeding damage detected in one floor indicates a low risk of importing colonies of timber pests in containers. The survey collection of dead insects demonstrates that containers are regularly exposed to economically important quarantinable insects, including timber pests (bostrichids, curculionids, cerambycids, siricids and termites), agricultural pests (including Adoretus sinicus, Adoretus sp., Carpophilus obsoletus and Philaenus spumarius), and nuisance pests (vespids and Solenopsis sp.). Stored product pests were found in more than 10% of containers. The assessment of pest risk associated with shipping containers is discussed in terms of the quantity and quality of opportunities for exotic insects to establish via this pathway.
Resumo:
Effects of gall damage by the introduced moth Epiblema stremiana on different growth stages of the weed Parathenium hysterophorus was evaluated in a field cage using potted plants with no competition and in naturally regenerated populations with intraspecific competition. Gall damage at early stages of plant growth reduced the plant height, main stem height, flower production, lear production, and shoot and root biomass. All galled, potted plants with no competition produced flowers irrespective of the growth stage at which the plants were affected by galling, but lesser than in ungalled plants. Gall induction during early growth stages in field plants experiencing competition prevented 30% of the plants reaching flowering. However, 6% of the field plants escaped from gall damage, as their main stems were less vigorous to sustain the development of galls. Flower production per unit total plant biomass was lower in galled plants than in ungalled plants, and the reduction was more intense when gall damage was initiated at early stages of plant growth. In potted plants with no competition, the number of galls increased with the plant vigour, as the gall insects preferred more vigorous plants. But in field plants there were no relationship between gall abundance and plant vigour, as intraspecific competition enhanced the negative effects of galling by reducing the vigour of the weed.
Resumo:
Six species of insects and a rust fungus have been successfully established for biocontrol of the weed Parthenicum hysterophorus L. in Queensland, Australia. Effectiveness of biocontrol insects was evaluated at two properties in Queensland during 1996-97 based on an exclusion experiment using insecticides. Parthenium-infested plots with and without biocontrol insects were sampled at monthly intervals and the impact of biocontrol insects on parthenium at individual plant and whole population levels monitored. Biocontrol insects were more effective at Mt Panorama (central Queensland) than at Plain Creek (north Queensland). At Mt Panorama, the leaf-feeding beetle Zygogramma bicolorata Pallister caused 96% defoliation and the stem-galling moth Epiblema strenuana Walker affected 100% of the plants, resulting in reductions of 90% in weed density, 40% in plant height, and 82% in flower production. Exclusion of biocontrol insects resulted in a 52% increase in seedling emergence and a seven-fold increase in the soil seed bank in the following season. At Plain Creek, E. strenuana was the only prominent agent. It affected 92% of the plants and prevented 32% of plants from producing any flowers, reduced plant height by 40% and flower production by 49%, but did not reduce the plant biomass, weed density or soil seed bank. However, exclusion of biocontrol insects resulted in an eight-fold increase in the soil seed bank in the following season.
Resumo:
Much progress has been made on inferring population history from molecular data. However, complex demographic scenarios have been considered rarely or have proved intractable. The serial introduction of the South-Central American cane Load Bufo marinas in various Caribbean and Pacific islands involves four major phases: a possible genetic admixture during the first introduction, a bottleneck associated with founding, a transitory, population boom, and finally, a demographic stabilization. A large amount of historical and demographic information is available for those introductions and can be combined profitably with molecular data. We used a Bayesian approach to combine this information With microsatellite (10 loci) and enzyme (22 loci) data and used a rejection algorithm to simultaneously estimate the demographic parameters describing the four major phases of the introduction history,. The general historical trends supported by microsatellites and enzymes were similar. However, there was a stronger support for a larger bottleneck at introductions for microsatellites than enzymes and for a more balanced genetic admixture for enzymes than for microsatellites. Verb, little information was obtained from either marker about the transitory population boom observed after each introduction. Possible explanations for differences in resolution of demographic events and discrepancies between results obtained with microsatellites and enzymes were explored. Limits Of Our model and method for the analysis of nonequilibrium populations were discussed.
Resumo:
Observations of an insect's movement lead to theory on the insect's flight behaviour and the role of movement in the species' population dynamics. This theory leads to predictions of the way the population changes in time under different conditions. If a hypothesis on movement predicts a specific change in the population, then the hypothesis can be tested against observations of population change. Routine pest monitoring of agricultural crops provides a convenient source of data for studying movement into a region and among fields within a region. Examples of the use of statistical and computational methods for testing hypotheses with such data are presented. The types of questions that can be addressed with these methods and the limitations of pest monitoring data when used for this purpose are discussed. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Experimental treatments to compare behavioural responses included native fish species only, natives plus one exotic species and natives plus both exotic species. The mosquitofish, Gambusia holbrooki frequently attacked both native species, but tended to nip Melanotaenia duboulayi (especially small individuals) and chase Pseudomugil signifer The frequency of attacks by G. holbrooki on M. duboulayi rose when all four fish species were present. When food was added, all four species showed a strong increase in aggression, especially in the four-species treatment, where there were significant increases in the frequency of attacks by the swordtail Xiphophorus helleri on M. duboulay and by M. duboulayi on G. holbrooki, and of conspecific attacks by M. duboulayi. Increased attack frequency was associated with aggregation closer to the water's surface, regardless of the presence of food. The results support the hypothesis that introduced poeciliids can have deleterious competitive effects on native species. However, while juvenile M. duboulayi were particularly vulnerable to the secondary, effects of fin-nipping, R signifer appeared to be more susceptible to physical displacement and reduced food capture success.
Resumo:
Biological control is the purposeful introduction of parasites, predators, and pathogens to reduce or suppress pest populations. Wolbachia are inherited bacteria of arthropods that have recently attracted attention for their potential as new biocontrol agents. Wolbachia manipulate host reproduction by using several strategies, one of which is cytoplasmic incompatibility (CI) [Stouthamer, R., Breeuwer, J. A. J. & Hurst, G. D. D. (1999) Annu. Rev. Microbiol. 53,71-102]. We established Wolbachia-infected lines of the medfly Ceratitis capitata using the infected cherry fruit fly Rhagoletis cerasi as donor. Wolbachia induced complete CI in the novel host. Laboratory cage populations were completely suppressed by single releases of infected males, suggesting that Wolbachia-induced CI could be used as a novel environmentally friendly tool for the control of medfly populations. The results also encourage the introduction of Wolbachia into pest and vector species of economic and hygenic relevance to suppress or modify natural populations.