17 resultados para Insult
Resumo:
Progress in understanding brain/behavior relationships in adult-acquired dysprosody has led to models of cortical hemispheric representation of prosodic processing based on functional (linguistic vs affective) or physical (timing vs pitch) parameters. These explanatory perspectives have not been reconciled, and also a number of neurobehavior syndromes that include dysprosody among their neurological signs have not yet been integrated. In addition to expanding the functional perspective on prosody, some of these syndromes have implicated a significant role of subcortical nuclei in prosodic competence. In this article, two patients with acquired dysprosodic speech following damage to basal ganglia nuclei were evaluated using behavioral, acoustic, cognitive, and radiographic approaches. Selective quantitative measures were performed on each individual’s performance to provide detailed verification and clarification of clinical observations, and to test hypotheses regarding prosodic function. These studies, combined with a review of related clinical research findings, exemplify the value of a broader perspective on the neurobehavioral dysfunction underlying acquired adult dysprosodic speech, and lead to a new, proposed conceptual framework for the cerebral representation of prosody.
Resumo:
The most commonly observed severe lung injuries in early life are the respiratory distress syndrome in premature infants and the acute respiratory distress syndrome in children. Both diseases are characterised by alveolar instability, fluid filled airspace and some degree of airway obstruction. In the acute phase, collapsed alveoli can be reopened with positive end-expiratory pressure and lung recruitment. New insight into the physiology of lung recruitment suggests that the shape of the pressure–volume curve is defined by the change in rate of alveolar opening and closing. Reduced lung volumes and severe ventilation maldistribution are found in the acute phase but may persist during childhood. Any severe lung injury in this early phase of life can cause significant structural and functional damage to the developing lung. Follow-up studies of children with chronic lung disease have shown that the functional abnormalities will improve but may still be present in later childhood.
Resumo:
The liver plays a major role in the body's metabolism and, as such, is subject to a multitude of insults-infectious, toxic, metabolic, nutritional, traumatic, and neoplastic. Consequently, liver disease is not uncommon in avian and other exotic patients. As diagnostic modalities (and our experience in using them and interpreting them) improve, veterinarian are becoming more aware of the presence of (often subclinical) liver disease in their patients, and often of the specific nature of that disease. Through new research, veterinarians also are more able to appreciate the liver's unique function and metabolism and the role it plays in the function of the body as a whole. This understanding has led to a better awareness of how the liver responds to disease, and this has allowed refinements in the treatment of diseased and damaged livers. However, treating liver disease is not just about treating the organ; the patient as a whole must be supported and treated until a successful resolution has been achieved. Treatment therefore must be aimed at supporting the patient, treating the specific condition, and creating an environment that allows the liver to heal and regenerate. This article briefly reviews the anatomy and physiology of the liver and how it responds to insult. Treatment of liver disease then is discussed using the aims described above. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Purpose: To determine whether the localization of retinal glutamate transporters is affected by retinal ischaemia and whether their ability to transport glutamate decreases with the progression of ischemic retinal and optic nerve degeneration. Methods: Retinal ischemia was induced in rats by acutely increasing the intraocular pressure (IOP, 110 mmHg/60 min). Reperfusion was permitted for periods up to 60 days post-ischemia. Functional evaluation was performed by monitoring the pupil light reflexes (PLRs) and electroretinograms (flash, flicker ERG and oscillatory potentials). Glutamate transporter localization and D-aspartate (glutamate analogue) uptake were assessed by immunohistochemistry. Results: Intense immunoreactivity for the retinal glutamate transporters (GLAST, GLT1, EAAC1 and EAAT5) was observed at all time points after the insult, despite severe retinal degeneration. D-aspartate was also normally accumulated in the ischemic retinas. Ten days post-operatively the PLR ratio (ratio = indirect/direct PLR = 34 +/- 7(.)5%) was significantly less than the pre-operative value (pre-op = 76(.)7 +/- 2 (.)6%, p < 0(.)05). However, 25 and 35 days post-operatively PLR ratios did not differ significantly from pre-operative values (44(.)4 +/- 6(.)9 and 53(.)8 +/- 9(.)6%, p > 0(.)05). Forty-five and 60 days post-operatively the PLR ratio declined again and was significantly lower than the pre-operative value (33(.)8 + 8(.)7 and 26(.)2 + 8(.)9%, p < 0(.)05). Statistical analysis revealed that all tested ERG components had significantly higher values at 32, but not at 42 and 58 days post-operatively when compared to the first time point recorded post-operatively (10 days). Conclusions: While retinal glutamate transport is compromised during an acute ischemic insult, consequent retinal recovery and degeneration are not due to a change in the excitatory amino acid transporter localization or D-aspartate (glutamate analogue) uptake. Rat retina and optic nerve are capable of spontaneous, but temporary, functional recovery after an acute ischemic insult. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
An eight-month-old Labrador Retriever was presented with urinary incontinence and haematuria. Recent history suggested that the dog had access to solid fuel hexamine tablets, ingesting a dose of 6g/kg. Clinical signs, laboratory investigation and ultrasonographic findings were supportive of chemically-induced cystitis and a diagnosis of suspected hexamine intoxication was made. The dog recovered uneventfully and it is unlikely that the insult will be carcinogenic.
Resumo:
This article presents the proceedings of a symposium held at the meeting of the International Society for Biomedical Research on Alcoholism (ISBRA) in Mannheim, Germany, in October, 2004. Chronic alcoholism follows a fluctuating course, which provides a naturalistic experiment in vulnerability, resilience, and recovery of human neural systems in response to presence, absence, and history of the neurotoxic effects of alcoholism. Alcohol dependence is a progressive chronic disease that is associated with changes in neuroanatomy, neurophysiology, neural gene expression, psychology, and behavior. Specifically, alcohol dependence is characterized by a neuropsychological profile of mild to moderate impairment in executive functions, visuospatial abilities, and postural stability, together with relative sparing of declarative memory, language skills, and primary motor and perceptual abilities. Recovery from alcoholism is associated with a partial reversal of CNS deficits that occur in alcoholism. The reversal of deficits during recovery from alcoholism indicates that brain structure is capable of repair and restructuring in response to insult in adulthood. Indirect support of this repair model derives from studies of selective neuropsychological processes, structural and functional neuroimaging studies, and preclinical studies on degeneration and regeneration during the development of alcohol dependence and recovery from dependence. Genetics and brain regional specificity contribute to unique changes in neuropsychology and neuroanatomy in alcoholism and recovery. This symposium includes state-of-the-art presentations on changes that occur during active alcoholism as well as those that may occur during recovery-abstinence from alcohol dependence. Included are human neuroimaging and neuropsychological assessments, changes in human brain gene expression, allelic combinations of genes associated with alcohol dependence and preclinical studies investigating mechanisms of alcohol induced neurotoxicity, and neuroprogenetor cell expansion during recovery from alcohol dependence.
Resumo:
Matrix accumulation in the renal tubulointerstitium is predictive of a progressive decline in renal function. Transforming growth factor-beta(1) (TGF-beta(1)) and, more recently, connective tissue growth factor (CTGF) are recognized to play key roles in mediating the fibrogenic response, independently of the primary renal insult. Further definition of the independent and interrelated effects of CTGF and TGF-beta(1) is critical for the development of effective antifibrotic strategies. CTGF (20 ng/ml) induced fibronectin and collagen IV secretion in primary cultures of human proximal tubule cells (PTC) and cortical fibroblasts (CF) compared with control values (P < 0.005 in all cases). This effect was inhibited by neutralizing antibodies to either TGF-beta or to the TGF-beta type II receptor (TbetaRII). TGF-beta(1) induced a greater increase in fibronectin and collagen IV secretion in both PTC (P < 0.01) and CF (P < 0.01) compared with that observed with CTGF alone. The combination of TGF-beta(1) and CTGF was additive in their effects on both PTC and CF fibronectin and collagen IV secretion. TGF-beta(1) (2 ng/ml) stimulated CTGF mRNA expression within 30 min, which was sustained for up to 24 h, with a consequent increase in CTGF protein (P < 0.05), whereas CTGF had no effect on TGF-beta(1) mRNA or protein expression. TGF-beta(1) (2 ng/ml) induced phosphorylated (p)Smad-2 within 15 min, which was sustained for up to 24 h. CTGF had a delayed effect on increasing pSmad-2 expression, which was evident at 24 h. In conclusion, this study has demonstrated the key dependence of the fibrogenic actions of CTGF on TGF-beta. It has further uniquely demonstrated that CTGF requires TGF-beta, signaling through the TbetaRII in both PTCs and CFs, to exert its fibrogenic response in this in vitro model.
Resumo:
The hypothesis to be tested in this study was that the cognitive deficits that have been documented in patients with Borderline Personality Disorder (BPD) are largely the consequence of organic insult, either developmental or acquired. Using a cross-sectional design, 80 subjects (males and females) who met the criteria for BPD participated in the study. They completed a battery of neuropsychological tests and a comprehensive interview assessing organic status as well as measures of the potentially confounding factors of current levels of depression and anxiety. It was expected that BPD-patients with a probable history of organic insult would perform significantly worse than would BPD patients without such a history. Analyses of the results provided partial support for the hypothesis. Subjects with both BPD and a history of organic insult were significantly more impaired on several measures including measures of attention than were BPD only subjects. The results suggested that the impaired cognitive performance of persons diagnosed with BPD may, in part, be attributed to organic factors.
Resumo:
Objective To quantify the temperature changes in the dental pulp associated with equine dental procedures using power grinding equipment. Design A matrix experimental design with replication on the same sample was followed to allow the following independent variables to be assessed: horse age (young or old), tooth type (premolar or molar), powered grinding instrument (rotating disc or die grinder), grinding time (15 or 20 seconds) and the presence or absence of water coolant. Procedure Sound premolar and molar teeth from a 6-year-old horse and a 15-year-old horse, which had been removed postmortem, were sectioned parallel to the occlusal plane to allow placement of a miniature thermocouple at the level of the dental pulp. The maximum temperature increase, the time taken to reach this maximum and the cooling time were measured (n=10 in each study). The teeth were placed in a vice and the instrument used on the tooth as per clinical situation. Results Significant differences were recorded for horse age (P < 0.001), instrument type (P < 0.001), grinding time (P < 0.001) and presence or absence of coolant (P < 0.001). There was no significant difference for tooth type. Conclusion Thermal insult to the dental pulp from the use of power instruments poses a significant risk to the tooth. This risk can be reduced or eliminated by appropriate selection of treatment time and by the use of water irrigation as a coolant. The increased dentine thickness in older horses appears to mitigate against thermal injury from frictional heat.
Resumo:
A comparison of a constant (continuous delivery of 4% FiO(2)) and a variable (initial 5% FiO(2) with adjustments to induce low amplitude EEG (LAEEG) and hypotension) hypoxic/ischemic insult was performed to determine which insult was more effective in producing a consistent degree of survivable neuropathological damage in a newborn piglet model of perinatal asphyxia. We also examined which physiological responses contributed to this outcome. Thirty-nine 1-day-old piglets were subjected to either a constant hypoxic/ischemic insult of 30- to 37-min duration or a variable hypoxic/ischemic insult of 30-min low peak amplitude EEG (LAEEG < 5 mu V) including 10 min of low mean arterial blood pressure (MABP < 70% of baseline). Control animals (n = 6) received 21% FiO(2) for the duration of the experiment. At 72 h, the piglets were euthanased, their brains removed and fixed in 4% paraformaldehyde and assessed for hypoxic/ischemic injury by histological analysis. Based on neuropathology scores, piglets were grouped as undamaged or damaged; piglets that did not survive to 72 h were grouped separately as dead. The variable insult resulted in a greater number of piglets with neuropathological damage (undamaged = 12.5%, damaged = 68.75%, dead = 18.75%) while the constant insult resulted in a large proportion of undamaged piglets (undamaged = 50%, damaged = 22.2%, dead = 27.8%). A hypoxic insult varied to maintain peak amplitude EEG < 5 mu V results in a greater number of survivors with a consistent degree of neuropathological damage than a constant hypoxic insult. Physiological variables MABP, LAEEG, pH and arterial base excess were found to be significantly associated with neuropathological outcome. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Long (6- to 9-mo) bouts of estivation in green-striped burrowing frogs lead to 28% atrophy of cruralis oxidative fibers (P < 0.05) and some impairment of in vitro gastrocnemius endurance (P < 0.05) but no significant deficit in maximal twitch force production. These data suggest the preferential atrophy of oxidative fibers at a rate slower than, but comparable to, laboratory disuse models. We tested the hypothesis that the frog limits atrophy by modulating oxidative stress. We assayed various proteins at the transcript level and verified these results for antioxidant enzymes at the biochemical level. Transcript data for NADH ubiquinone oxidoreductase subunit 1 (71% downregulated, P < 0.05) and ATP synthase (67% downregulated, P < 0.05) are consistent with mitochondrial quiescence and reduced oxidant production. Meanwhile, uncoupling protein type 2 transcription (P < 0.31), which is thought to reduce mitochondrial leakage of reactive oxygen species, was maintained. Total antioxidant defense of water-soluble (22.3 +/- 1.7 and 23.8 +/- 1.5 mu M/mu g total protein in control and estivator, respectively, P = 0.53) and membrane-bound proteins (31.5 +/- 1.9 and 42.1 +/- 7.3 mu M/mu g total protein in control and estivator, respectively, P = 0.18) was maintained, equivalent to a bolstering of defense relative to oxygen insult. This probably decelerates muscle atrophy by preventing accumulation of oxidative damage in static protein reserves. Transcripts of the mitochondrially encoded antioxidant superoxide dismutase type 2 ( 67% downregulated, P < 0.05) paralleled mitochondrial activity, whereas nuclear-encoded catalase and glutathione peroxidase were maintained at control values (P = 0.42 and P = 0.231), suggesting a dissonance between mitochondrial and nuclear antioxidant expression. Pyruvate dehydrogenase kinase 4 transcription was fourfold lower in estivators (P = 0.11), implying that, in contrast to mammalian hibernators, this enzyme does not drive the combustion of lipids that helps spare hypometabolic muscle.
Resumo:
Although MYB overexpression in colorectal cancer (CRC) is known to be a prognostic indicator for poor survival, the basis for this overexpression is unclear. Among multiple levels of MYB regulation, the most dynamic is the control of transcriptional elongation by sequences within intron I. The authors have proposed that this regulatory sequence is transcribed into an RNA stem-loop and 19-residue polyuridine tract, and is subject to mutation in CRC. When this region was examined in colorectal and breast carcinoma cell lines and tissues, the authors found frequent mutations only in CRC. It was determined that these mutations allowed increased transcription compared with the wild type sequence. These data suggest that this MYB regulatory region within intron I is subject to mutations in CRC but not breast cancer, perhaps consistent with the mutagenic insult that occurs within the colon and not mammary tissue. In CRC, these mutations may contribute to MYB overexpression, highlighting the importance of noncoding sequences in the regulation of key cancer genes. (c) 2006 Wiley-Liss, Inc.