36 resultados para IMAGE ENHANCEMENT
Resumo:
Background: Remote access to pediatric cardiology diagnostic services is enabled by real-time transmission of echocardiographic images. Several transmission bandwidths have been used but there has been little analysis of image quality provided by different bandwidths. We designed a study of the quality of transmitted images at various bandwidths. Methods: Two echocardiographers viewed randomly a series of 13 recorded pediatric echocardiographic images either directly or after transmission using 1 of 4 bandwidths: 256; 384; 512; or 768 kbps. An image clarity scoring scale was used to assess image quality of cardiac structures. Results: Measurable differences were found in image quality with different transmission bandwidths; 512 kbps was the minimum for consistently clear imaging of all cardiac structures examined. Conclusion: Bandwidth greater than 512 kbps confers sharper images subjectively although this could not be quantified by our methods.
Resumo:
A novel algorithm for performing registration of dynamic contrast-enhanced (DCE) MRI data of the breast is presented. It is based on an algorithm known as iterated dynamic programming originally devised to solve the stereo matching problem. Using artificially distorted DCE-MRI breast images it is shown that the proposed algorithm is able to correct for movement and distortions over a larger range than is likely to occur during routine clinical examination. In addition, using a clinical DCE-MRI data set with an expertly labeled suspicious region, it is shown that the proposed algorithm significantly reduces the variability of the enhancement curves at the pixel level yielding more pronounced uptake and washout phases.
Resumo:
Subtractive imaging in confocal fluorescence light microscopy is based on the subtraction of a suitably weighted widefield image from a confocal image. An approximation to a widefield image can be obtained by detection with an opened confocal pinhole. The subtraction of images enhances the resolution in-plane as well as along the optic axis. Due to the linearity of the approach, the effect of subtractive imaging in Fourier-space corresponds to a reduction of low spatial frequency contributions leading to a relative enhancement of the high frequencies. Along the direction of the optic axis this also results in an improved sectioning. Image processing can achieve a similar effect. However, a 3D volume dataset must be acquired and processed, yielding a result essentially identical to subtractive imaging but superior in signal-to-noise ratio. The latter can be increased further with the technique of weighted averaging in Fourier-space. A comparison of 2D and 3D experimental data analysed with subtractive imaging, the equivalent Fourier-space processing of the confocal data only, and Fourier-space weighted averaging is presented. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Current image database metadata schemas require users to adopt a specific text-based vocabulary. Text-based metadata is good for searching but not for browsing. Existing image-based search facilities, on the other hand, are highly specialised and so suffer similar problems. Wexelblat's semantic dimensional spatial visualisation schemas go some way towards addressing this problem by making both searching and browsing more accessible to the user in a single interface. But the question of how and what initial metadata to enter a database remains. Different people see different things in an image and will organise a collection in equally diverse ways. However, we can find some similarity across groups of users regardless of their reasoning. For example, a search on Amazon.com returns other products also, based on an averaging of how users navigate the database. In this paper, we report on applying this concept to a set of images for which we have visualised them using traditional methods and the Amazon.com method. We report on the findings of this comparative investigation in a case study setting involving a group of randomly selected participants. We conclude with the recommendation that in combination, the traditional and averaging methods would provide an enhancement to current database visualisation, searching, and browsing facilities.
Resumo:
The research reported builds on our earlier work (Houghton, Carroll, & Odgers, 1998) which explored young children's and adolescents' views pertaining to knowledge and awareness of alcohol and alcohol-related issues. In this second study 640 (286 male and 354 female) school students randomly selected from five primary schools and five high schools in Perth, Western Australia participated. Data were obtained using The Which Group picture booklet questionnaire which comprises five parts and utilises illustrations (drawn by a professional children's artist) to gather information about children's and adolescents' orientations towards alcohol risk social situations, reputation enhancement, self-concept, and other related issues. Of the sample, 73% of males and 70.6% of females had tried alcohol, with beer being consumed most often. Significantly more participants in higher Year levels had tried alcohol. Over 90% said they drank at a party. Multivariate analysis revealed that nine of the 11 dependent variables contributed to the significant main effect of alcohol risk group, of which three were self-concept variables and six were reputation enhancement variables. It appears that individuals with the highest levels of orientation to alcohol risk believe that they are liked by their families, are physically attractive and have greater confidence in themselves. They also have higher levels of Admiration of Alcohol Related Activities and also of prosocial activities. While striving to attain a non-conforming reputation these individuals also wish to be ideally perceived by others as conforming. Gender and Age differences are investigated.
Resumo:
We present a review of perceptual image quality metrics and their application to still image compression. The review describes how image quality metrics can be used to guide an image compression scheme and outlines the advantages, disadvantages and limitations of a number of quality metrics. We examine a broad range of metrics ranging from simple mathematical measures to those which incorporate full perceptual models. We highlight some variation in the models for luminance adaptation and the contrast sensitivity function and discuss what appears to be a lack of a general consensus regarding the models which best describe contrast masking and error summation. We identify how the various perceptual components have been incorporated in quality metrics, and identify a number of psychophysical testing techniques that can be used to validate the metrics. We conclude by illustrating some of the issues discussed throughout the paper with a simple demonstration. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
This research reports the findings of two studies conducted to measure and then investigate differences between delinquent, nondelinquent, and at-risk youths' orientations towards reputation enhancement. In the first study, concerning item selection and scale development, the factor structure and content validity of a potential Reputation Enhancement Scale were tested by examining the item responses of the scale completed by 230 high-school students. In the second study, the scale was validated by comparing the item responses of 80 delinquent, 90 at-risk, and 90 nondelinquent adolescents with the responses of the original students. The instrument was found to be reliable (alphas from .64 to .92), indicating that the factors are dependable across different samples, and the coefficients of congruence were sufficiently high to investigate meaningful group differences. Three second-order factors (Conforming Reputation, Nonconforming Reputation, Self-presentation) were derived from the 15 first-order factors. Although multivariate analyses revealed significant differences between the reputational orientations of delinquent, at-risk, and nondelinquent participants, the self-presentation second-order factor did not differentiate the three groups.
Resumo:
The aim of the present research was to provide school psychologists with valid instruments with which to assess the goals and reputations of young children. This was achieved by ascertaining whether the factor structures and the second-order factor models of the high school versions of the Importance of Goals (Carroll, et al., 1997) and Reputation Enhancement Scales (Carroll, et al., 1999) could be replicated with a primary school sample. Eight hundred and eighty-six 10 to 12 year old children were administered modified versions of the two scales, which were combined and renamed the Children's Activity Questionnaire. For the two scales, the factor structure proved replicable and reliable with the primary school sample. A comparison between the factor loadings of the primary school and the high school samples using the coefficient of congruence procedure demonstrated similarity indicating that the scales are replicable and able to be used with a younger primary school sample. Structural equation modelling indicated that the second-order factor structure of the Importance of Goals Scale was acceptable but this was not the case for the second-order factor structure of the Reputation Enhancement Scale.
Resumo:
The compound eyes of mantis shrimps, a group of tropical marine crustaceans, incorporate principles of serial and parallel processing of visual information that may be applicable to artificial imaging systems. Their eyes include numerous specializations for analysis of the spectral and polarizational properties of light, and include more photoreceptor classes for analysis of ultraviolet light, color, and polarization than occur in any other known visual system. This is possible because receptors in different regions of the eye are anatomically diverse and incorporate unusual structural features, such as spectral filters, not seen in other compound eyes. Unlike eyes of most other animals, eyes of mantis shrimps must move to acquire some types of visual information and to integrate color and polarization with spatial vision. Information leaving the retina appears to be processed into numerous parallel data streams leading into the central nervous system, greatly reducing the analytical requirements at higher levels. Many of these unusual features of mantis shrimp vision may inspire new sensor designs for machine vision
Resumo:
Axial X-ray Computed tomography (CT) scanning provides a convenient means of recording the three-dimensional form of soil structure. The technique has been used for nearly two decades, but initial development has concentrated on qualitative description of images. More recently, increasing effort has been put into quantifying the geometry and topology of macropores likely to contribute to preferential now in soils. Here we describe a novel technique for tracing connected macropores in the CT scans. After object extraction, three-dimensional mathematical morphological filters are applied to quantify the reconstructed structure. These filters consist of sequences of so-called erosions and/or dilations of a 32-face structuring element to describe object distances and volumes of influence. The tracing and quantification methodologies were tested on a set of undisturbed soil cores collected in a Swiss pre-alpine meadow, where a new earthworm species (Aporrectodea nocturna) was accidentally introduced. Given the reduced number of samples analysed in this study, the results presented only illustrate the potential of the method to reconstruct and quantify macropores. Our results suggest that the introduction of the new species induced very limited chance to the soil structured for example, no difference in total macropore length or mean diameter was observed. However. in the zone colonised by, the new species. individual macropores tended to have a longer average length. be more vertical and be further apart at some depth. Overall, the approach proved well suited to the analysis of the three-dimensional architecture of macropores. It provides a framework for the analysis of complex structures, which are less satisfactorily observed and described using 2D imaging. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Background: Concerns exist regarding the effect of radiation dose from paediatric pelvic CT scans and the potential later risk of radiation-induced neoplasm and teratogenic outcomes in these patients. Objective: To assess the diagnostic quality of CT images of the paediatric pelvis using either reduced mAs or increased pitch compared with standard settings. Materials and methods: A prospective study of pelvic CT scans of 105 paediatric patients was performed using one of three protocols: (1) 31 at a standard protocol of 200 mA with rotation time of 0.75 s at 120 kVp and a pitch factor approximating 1.4; (2) 31 at increased pitch factor approaching 2 and 200 mA; and (3) 43 at a reduced setting of 100 mA and a pitch factor of 1.4. All other settings remained the same in all three groups. Image quality was assessed by radiologists blinded to the protocol used in each scan. Results: No significant difference was found between the quality of images acquired at standard settings and those acquired at half the standard mAs. The use of increased pitch factor resulted in a higher proportion of poor images. Conclusions: Images acquired at 120 kVp using 75 mAs are equivalent in diagnostic quality to those acquired at 150 mAs. Reduced settings can provide useful imaging of the paediatric pelvis and should be considered as a standard protocol in these situations.
Resumo:
The aim of this work was to exemplify the specific contribution of both two- and three-dimensional (31)) X-ray computed tomography to characterise earthworm burrow systems. To achieve this purpose we used 3D mathematical morphology operators to characterise burrow systems resulting from the activity of an anecic (Aporrectodea noctunia), and an endogeic species (Allolobophora chlorotica), when both species were introduced either separately or together into artificial soil cores. Images of these soil cores were obtained using a medical X-ray tomography scanner. Three-dimensional reconstructions of burrow systems were obtained using a specifically developed segmentation algorithm. To study the differences between burrow systems, a set of classical tools of mathematical morphology (granulometries) were used. So-called granulometries based on different structuring elements clearly separated the different burrow systems. They enabled us to show that burrows made by the anecic species were fatter, longer, more vertical, more continuous but less sinuous than burrows of the endogeic species. The granulometry transform of the soil matrix showed that burrows made by A. nocturna were more evenly distributed than those of A. chlorotica. Although a good discrimination was possible when only one species was introduced into the soil cores, it was not possible to separate burrows of the two species from each other in cases where species were introduced into the same soil core. This limitation, partly due to the insufficient spatial resolution of the medical scanner, precluded the use of the morphological operators to study putative interactions between the two species.