224 resultados para High Frequencies
Resumo:
An inverse methodology for the design of biologically loaded radio-frequency (RF) coils for magnetic resonance imaging applications is described. Free space time-harmonic electromagnetic Green's functions and de-emphasized B-1 target fields are used to calculate the current density on the coil cylinder. In theory, with the B-1 field de-emphasized in the middle of the RF transverse plane, the calculated current distribution can generate an internal magnetic field that can reduce the central overemphasis effect caused by field/tissue interactions at high frequencies. The current distribution of a head coil operating at 4 T (170 MHz) is calculated using an inverse methodology with de-emphasized B-1. target fields. An in-house finite-difference time-domain routine is employed to evaluate B-1 field and signal intensity inside a homogenous cylindrical phantom and then a complete human head model. A comparison with a conventional RF birdcage coil is carried out and demonstrates that this method can help in decreasing the normal bright region caused by field/tissue interactions in head images at 170 MHz and higher field strengths.
Resumo:
An inverse methodology to assist in the design of radio-frequency (RF) head coils for high field MRI application is described in this work. Free space time-harmonic electromagnetic Green's functions and preemphasized B1 field are used to calculate the current density on the coil cylinder. With B1 field preemphasized and lowered in the middle of the RF transverse plane, the calculated current distribution can generate an internal magnetic field that can reduce the EM field/tissue interactions at high frequencies. The current distribution of a head coil operating at 4 T is calculated using inverse methodology with preemphasized B1 fields. FDTD is employed to calculate B1 field and signal intensity inside a homogenous cylindrical phantom and human head. A comparison with conventional RF birdcage coil is reported here and demonstrated that inverse-method designed coil with preemphasized B1 field can help in decreasing the notorious bright region caused by EM field/tissue interactions in the human head images at 4 T.
Resumo:
The purpose of this study was to explore the potential advantages, both theoretical and applied, of preserving low-frequency acoustic hearing in cochlear implant patients. Several hypotheses are presented that predict that residual low-frequency acoustic hearing along with electric stimulation for high frequencies will provide an advantage over traditional long-electrode cochlear implants for the recognition of speech in competing backgrounds. A simulation experiment in normal-hearing subjects demonstrated a clear advantage for preserving low-frequency residual acoustic hearing for speech recognition in a background of other talkers, but not in steady noise. Three subjects with an implanted "short-electrode" cochlear implant and preserved low-frequency acoustic hearing were also tested on speech recognition in the same competing backgrounds and compared to a larger group of traditional cochlear implant users. Each of the three short-electrode subjects performed better than any of the traditional long-electrode implant subjects for speech recognition in a background of other talkers, but not in steady noise, in general agreement with the simulation studies. When compared to a subgroup of traditional implant users matched according to speech recognition ability in quiet, the short-electrode patients showed a 9-dB advantage in the multitalker background. These experiments provide strong preliminary support for retaining residual low-frequency acoustic hearing in cochlear implant patients. The results are consistent with the idea that better perception of voice pitch, which can aid in separating voices in a background of other talkers, was responsible for this advantage.
Resumo:
The purpose of the present study was to examine the benefits of providing audible speech to listeners with sensorineural hearing loss when the speech is presented in a background noise. Previous studies have shown that when listeners have a severe hearing loss in the higher frequencies, providing audible speech (in a quiet background) to these higher frequencies usually results in no improvement in speech recognition. In the present experiments, speech was presented in a background of multitalker babble to listeners with various severities of hearing loss. The signal was low-pass filtered at numerous cutoff frequencies and speech recognition was measured as additional high-frequency speech information was provided to the hearing-impaired listeners. It was found in all cases, regardless of hearing loss or frequency range, that providing audible speech resulted in an increase in recognition score. The change in recognition as the cutoff frequency was increased, along with the amount of audible speech information in each condition (articulation index), was used to calculate the "efficiency" of providing audible speech. Efficiencies were positive for all degrees of hearing loss. However, the gains in recognition were small, and the maximum score obtained by an listener was low, due to the noise background. An analysis of error patterns showed that due to the limited speech audibility in a noise background, even severely impaired listeners used additional speech audibility in the high frequencies to improve their perception of the "easier" features of speech including voicing
Resumo:
Few marine hybrid zones have been studied extensively, the major exception being the hybrid zone between the mussels Mytilus edulis and M. galloprovincialis in southwestern Europe. Here, we focus on two less studied hybrid zones that also involve Mytilus spp.; M. edulis and M. trossulus are sympatric and hybridize on both western and eastern coasts of the Atlantic Ocean. We review the dynamics of hybridization in these two hybrid zones and evaluate the role of local adaptation for maintaining species boundaries. In Scandinavia, hybridization and gene introgression is so extensive that no individuals with pure M. trossulus genotypes have been found. However, M. trossulus alleles are maintained at high frequencies in the extremely low salinity Baltic Sea for some allozyme genes. A synthesis of reciprocal transplantation experiments between different salinity regimes shows that unlinked Gpi and Pgm alleles change frequency following transplantation, such that post-transplantation allelic composition resembles native populations found in the same salinity. These experiments provide strong evidence for salinity adaptation at Gpi and Pgm (or genes linked to them). In the Canadian Maritimes, pure M. edulis and M. trossulus individuals are abundant, and limited data suggest that M. edulis predominates in low salinity and sheltered conditions, whereas M. trossulus are more abundant on the wave-exposed open coasts. We suggest that these conflicting patterns of species segregation are, in part, caused by local adaptation of Scandinavian M. trossulus to the extremely low salinity Baltic Sea environment.
Resumo:
Bioelectrical impedance analysis (BIA) offers the potential for a simple, portable and relatively inexpensive technique for the in vivo measurement of total body water (TBW). The potential of BIA as a technique of body composition analysis is even greater when one considers that body water can be used as a surrogate measure of lean body mass. However, BIA has not found universal acceptance even with the introduction of multi-frequency BIA (MFBIA) which, potentially, may improve the predictive accuracy of the measurement. There are a number of reasons for this lack of acceptance, although perhaps the major reason is that no single algorithm has been developed which can be applied to all subject groups. This may be due, in part, to the commonly used wrist-to-ankle protocol which is not indicated by the basic theory of bioimpedance, where the body is considered as five interconnecting cylinders. Several workers have suggested the use of segmental BIA measurements to provide a protocol more in keeping with basic theory. However, there are other difficulties associated with the application of BIA, such as effects of hydration and ion status, posture and fluid distribution. A further putative advantage of MFBIA is the independent assessment not only of TBW but also of the extracellular fluid volume (ECW), hence heralding the possibility of,being able to assess the fluid distribution between these compartments. Results of studies in this area have been, to date, mixed. Whereas strong relationships of impedance values at low frequencies with ECW, and at high frequencies with TBW, have been reported, changes in impedance are not always well correlated with changes in the size of the fluid compartments (assessed by alternative and more direct means) in pathological conditions. Furthermore, the theoretical advantages of Cole-Cole modelling over selected frequency prediction have not always been apparent. This review will consider the principles, methodology and applications of BIA. The principles and methodology will,be considered in relation to the basic theory of BIA and difficulties experienced in its application. The relative merits of single and multiple frequency BIA will be addressed, with particular attention to the latter's role in the assessment of compartmental fluid volumes. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The popular Newmark algorithm, used for implicit direct integration of structural dynamics, is extended by means of a nodal partition to permit use of different timesteps in different regions of a structural model. The algorithm developed has as a special case an explicit-explicit subcycling algorithm previously reported by Belytschko, Yen and Mullen. That algorithm has been shown, in the absence of damping or other energy dissipation, to exhibit instability over narrow timestep ranges that become narrower as the number of degrees of freedom increases, making them unlikely to be encountered in practice. The present algorithm avoids such instabilities in the case of a one to two timestep ratio (two subcycles), achieving unconditional stability in an exponential sense for a linear problem. However, with three or more subcycles, the trapezoidal rule exhibits stability that becomes conditional, falling towards that of the central difference method as the number of subcycles increases. Instabilities over narrow timestep ranges, that become narrower as the model size increases, also appear with three or more subcycles. However by moving the partition between timesteps one row of elements into the region suitable for integration with the larger timestep these the unstable timestep ranges become extremely narrow, even in simple systems with a few degrees of freedom. As well, accuracy is improved. Use of a version of the Newmark algorithm that dissipates high frequencies minimises or eliminates these narrow bands of instability. Viscous damping is also shown to remove these instabilities, at the expense of having more effect on the low frequency response.
Resumo:
It has been reported that mutations in the quorum-sensing genes lasI and rhlI in Pseudomonas aeruginosa result in, among many other things, loss of twitching motility (A. Glessner, R. S. Smith, B. H. Iglewski, and J. B. Robinson, J. Bacteriol. 181:1623-1629, 1999). We constructed knockouts of lasI and rhlI and the corresponding regulatory genes lasR and rhlR and found no effect on twitching motility. However, twitching-defective variants accumulated during culturing of lasI and rhlI mutants. Further analysis showed that the stable twitching-defective variants of lasI and rhlI mutants had arisen as a consequence of secondary mutations in vfr and algR, respectively, both of which encode key regulators affecting a variety of phenotypes, including twitching motility. In addition, when grown in shaking broth culture, lasI and rhlI mutants, but not the wild-type parent, also accumulated unstable variants that lacked both twitching motility and swimming motility and appeared to be identical in phenotype to the S1 and S2 variants that were recently reported to occur at high frequencies in P. aeruginosa strains grown as a biofilm or in static broth culture (E. Deziel, Y. Comeau, and R. Villemur, J. Bacteriol. 183:1195-1204, 2001). These results indicate that mutations in one regulatory system may create distortions that select during subsequent culturing for compensatory mutations in other regulatory genes within the cellular network. This problem may have compromised some past studies of regulatory hierarchies controlled by quorum sensing and of bacterial regulatory systems in general.
Resumo:
Evoked otoacoustic emissions have demonstrated potential for application in the community-based hearing screening of paediatric populations. Distortion-product otoacoustic emissions (DPOAEs), as opposed to transient evoked otoacoustic emissions (TEOAEs), have not been extensively researched in this regard. The current study aimed to describe the range of DPOAE values obtained in a large cohort (1576 ears) of 6-year-old children in school settings and to examine possible ear asymmetry, gender and history of ear infection effects on the data. Results indicated a variety of significant effects, particularly in the high frequencies, for DPOAE signal-to-noise ratio. The measurement parameter, DPOAE amplitude (DP-amp), was found to display potentially less clinical applicability due to large standard deviation values. Use of descriptive normative data, as derived in the present investigation, may contribute toward future improvements in the hearing screening of 6-year-old schoolchildren
Resumo:
Subtractive imaging in confocal fluorescence light microscopy is based on the subtraction of a suitably weighted widefield image from a confocal image. An approximation to a widefield image can be obtained by detection with an opened confocal pinhole. The subtraction of images enhances the resolution in-plane as well as along the optic axis. Due to the linearity of the approach, the effect of subtractive imaging in Fourier-space corresponds to a reduction of low spatial frequency contributions leading to a relative enhancement of the high frequencies. Along the direction of the optic axis this also results in an improved sectioning. Image processing can achieve a similar effect. However, a 3D volume dataset must be acquired and processed, yielding a result essentially identical to subtractive imaging but superior in signal-to-noise ratio. The latter can be increased further with the technique of weighted averaging in Fourier-space. A comparison of 2D and 3D experimental data analysed with subtractive imaging, the equivalent Fourier-space processing of the confocal data only, and Fourier-space weighted averaging is presented. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Otoacoustic emissions are frequently acquired from patients in a variety of body positions aside from the standard, seated orientation. Yet little knowledge is available regarding whether these deviations will produce nonpathological changes to the clinical results obtained. The present study aimed to describe the effects of body position on the distortion-product otoacoustic emissions of 60 normal-hearing adults. With particular attention given to common clinical practice, the Otodynamics ILO292, and the measurement parameters of amplitude, signal-to-noise ratio, and noise were utilized. Significant position-related effects and interactions were revealed for all parameters. Specifically, stronger emissions in the mid frequencies and higher noise levels at the extreme low and high frequencies were produced by testing subjects while lying on their side compared with the seated position. Further analysis of body position effects on emissions is warranted, in order to determine the need for clinical application of position-dependent normative data.
Resumo:
The growth behaviour of the vibrational wear phenomenon known as rail corrugation is investigated analytically and numerically using mathematical models. A simplified feedback model for wear-type rail corrugation that includes a wheel pass time delay is developed with an aim to analytically distil the most critical interaction occurring between the wheel/rail structural dynamics, rolling contact mechanics and rail wear. To this end, a stability analysis on the complete system is performed to determine the growth of wear-type rail corrugations over multiple wheelset passages. This analysis indicates that although the dynamical behaviour of the system is stable for each wheel passage, over multiple wheelset passages, the growth of wear-type corrugations is shown to be the result of instability due to feedback interaction between the three primary components of the model. The corrugations are shown analytically to grow for all realistic railway parameters. From this analysis an analytical expression for the exponential growth rate of corrugations in terms of known parameters is developed. This convenient expression is used to perform a sensitivity analysis to identify critical parameters that most affect corrugation growth. The analytical predictions are shown to compare well with results from a benchmarked time-domain finite element model. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The maT clade of transposons is a group of transposable elements intermediate in sequence and predicted protein structure to mariner and Tc transposons, with a distribution thus far limited to a few invertebrate species. We present evidence, based on searches of publicly available databases, that the nematode Caenorhabditis briggsae has several maT-like transposons, which we have designated as CbmaT elements, dispersed throughout its genome. We also describe two additional transposon sequences that probably share their evolutionary history with the CbmaT transposons. One resembles a fold back variant of a CbmaT element, with long (380-bp) inverted terminal repeats (ITRs) that show a high degree (71%) of identity to CbmaT1. The other, which shares only the 26-bp ITR sequences with one of the CbmaT variants, is present in eight nearly identical copies, but does not have a transposase gene and may therefore be cross mobilised by a CbmaT transposase. Using PCR-based mobility assays, we show that CbmaT1 transposons are capable of excising from the C. briggsae genome. CbmaT1 excised approximately 500 times less frequently than Tcb1 in the reference strain AF16, but both CbmaT1 and Tcb1 excised at extremely high frequencies in the HK105 strain. The HK105 strain also exhibited a high frequency of spontaneous induction of unc-22 mutants, suggesting that it may be a mutator strain of C. briggsae.
Resumo:
Focussing particularly on solid-state laser systems, the phase-noise penalties of laser injection-locking and electro-optical phase-locking are derived using linearised quantum mechanical models. The fundamental performance limit (minimum achievable output phase noise) for an injection-locked laser (IJL) system at low frequencies is equal to that of a standard phase-insensitive amplifier, whereas, in principle, that of a phase-locked laser (PLL) system can be better. At high frequencies, the output phase noise of the IJL system is limited by that of the master laser, while that of the PLL system tends to a weighted sum of contributions from the master and slave laser fields. Under conditions of large amplification, particularly where there has been significant attenuation, the noise penalties are shown to be substantial. Nonideal photodetector characteristics are shown to add significantly to the noise penalties for the PLL system. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Dynamic foam films have been investigated using an improved experimental set-up with a CCD high-speed linescan camera in conjunction with the Scheludko micro-interferometric cell for studying the drainage and rupture of liquid foam films. The improved experimental set-up increased the sensibility of detection of the local thickness heterogeneities and domains during the film evolution. The evolution of the foam films up to the formation of black spots was recorded in the time intervals of 50ms. The wavelengths of the propagating surface waves and their frequencies were determined experimentally. The experimental results show that the current quasi-static hydrodynamic theory does not properly describe the wave dynamics with inter-domain channels. However, the thermodynamic condition for formation of black spots in the foam films was met by the experimental results. (c) 2005 Elsevier B.V. All rights reserved.