20 resultados para Glutathione Reductase
Resumo:
Background: Although iron deficiency is a major cause of anemia, other micronutrient deficiencies may also play a role. Objective: We examined whether multiple micronutrient supplementation is more efficacious than is supplementation with iron and folic acid alone for improving the hemoglobin and iron status of anemic adolescent girls in Bangladesh. Design: Anemic (hemoglobin < 12.0 g/dL) girls (n = 197) aged 14-18 y from rural schools in Dhaka District were entered into a randomized double-blind trial and received twice-weekly supplements of iron and folic acid (IFA group) or multiple micronutrients (15 micronutrients, including iron and folic acid; MMN group) for 12 wk. Results: At recruitment, the characteristics of the girls in the 2 groups were not significantly different, except for family size and body mass index. At the end of the study, although both groups benefited significantly from supplementation, mean changes in hemoglobin and serum ferritin concentrations were not significantly different between groups. Compared with the IFA group, girls in the MMN group had significantly greater increases in mean serum vitamin A, plasma vitamin C, red blood cell folic acid, and riboflavin concentrations (assessed as erythrocyte glutathione reductase activation coefficient). After 12 wk of supplementation, only the prevalence of vitamins A and C and riboflavin deficiencies decreased more significantly in the MMN group than in the IFA group. Conclusions: Twice-weekly MMN supplementation for 12 wk significantly improved the status of the micronutrients assessed but was not more efficacious than was supplementation with iron and folic acid alone in improving the hematologic status of anemic adolescent girls. More frequent doses may be needed to achieve full benefit.
Resumo:
In dimethylsulfoxide reductase of Rhodobacter capsulatus tryptophan-116 forms a hydrogen bond with a single oxo ligand bound to the molybdenum ion. Mutation of this residue to phenylalanine affected the UV/visible spectrum of the purified Mo-VI form of dimethylsulfoxide reductase resulting in the loss of the characteristic transition at 720 nm. Results of steady-state kinetic analysis and electrochemical studies suggest that tryptophan 116 plays a critical role in stabilizing the hexacoordinate monooxo Mo-VI form of the enzyme and prevents the formation of a dioxo pentacoordinate Mo-VI species, generated as a consequence of the dissociation of one of the dithiolene ligands of the molybdopterin cofactor from the Mo ion. (C) 2004 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
Resumo:
A MerR-like regulator (NmlR -Neisseria merR-like Regulator) identified in the Neisseria gonorrhoeae genome lacks the conserved cysteines known to bind metal ions in characterized proteins of this family. Phylogenetic analysis indicates that NmlR defines a subfamily of MerR-like transcription factors with a distinctive pattern of conserved cysteines within their primary structure. NmlR regulates itself and three other genes in N. gonorrhoeae encoding a glutathione-dependent dehydrogenase (AdhC), a CPx-type ATPase (CopA) and a thioredoxin reductase (TrxB). An nmlR mutant lacked the ability to survive oxidative stress induced by diamide and cumene hydroperoxide. It also had > 50-fold lower NADH-S-nitrosoglutathione oxidoreductase activity consistent with a role for AdhC in protection against nitric oxide stress. The upstream sequences of the NmlR regulated genes contained typical MerR-like operator/promoter arrangements consisting of a dyad symmetry located between the -35 and -10 elements of the target genes. The NmlR target operator/promoters were cloned into a beta-galactosidase reporter system and promoter activity was repressed by the introduction of NmlR in trans. Promoter activity was activated by NmlR in the presence of diamide. Under metal depleted conditions NmlR did not repress P-AdhC (or P-CopA) promoter activity, but this was reversed in the presence of Zn(II), indicating repression was Zn(II)-dependent. Analysis of mutated promoters lacking the dyad symmetry revealed constitutive promoter activity which was independent of NmlR. Gel shift assays further confirmed that NmlR bound to the target promoters possessing the dyad symmetry. Site-directed mutagenesis of the four NmlR cysteine residues revealed that they were essential for activation of gene expression by NmlR.
Resumo:
Caucasian renal transplant recipients from Queensland, Australia have the highest non-melanoma skin cancer (NMSC) risk worldwide. Although ultraviolet light (UVR) exposure is critical, genetic factors also appear important. We and others have shown that polymorphism in the glutathione S-transferases (GST) is associated with NMSC in UK recipients. However, the effect of high UVR exposure and differences in immunosuppressive regimen on these associations is unknown. In this study, we examined allelism in GSTM1, GSTM3, GSTT1 and GSTP1 in 361 Queensland renal transplant recipients. Data on squamous (SCC) and basal cell carcinoma (BCC), UVR/tobacco exposure and genotype were obtained. Associations with both NMSC risk and numbers were examined using logistic and negative binomial regression, respectively. In the total group, GSTM1 AB [P = 0.049, rate ratio (RR) = 0.23] and GSTM3 AA (P = 0.015, RR = 0.50) were associated with fewer SCC. Recipients were then stratified by prednisolone dose (less than or equal to7 versus >7 mg/day). In the low-dose group, GSTT1 null (P = 0.006, RR = 0.20) and GSTP1 Val/Val (P = 0.021, RR = 0.20) were associated with SCC numbers. In contrast, in the high-dose group, GSTM1 AB (P = 0.009, RR = 0.05), GSTM3 AB (P = 0.042, RR = 2.29) and BB (P = 0.014, RR = 5.31) and GSTP1 Val/Val (P = 0.036, RR = 2.98) were associated with SCC numbers. GSTM1 AB (P = 0.016) and GSTP1 Val/Val (P = 0.046) were also associated with fewer BCC in this group. GSTP1 associations were strongest in recipients with lower UVR/tobacco exposure. The data confirm our UK findings, suggesting that protection against UVR-induced oxidative stress is important in NMSC development in recipients, but that this effect depends on the immunosuppressant regimen.
Resumo:
Glutathione is the main source of intracellular antioxidant protection in the human erythrocyte and its redox status has frequently been used as a measure of oxidative stress. Extracellular glutathione has been shown to enhance intracellular reduced glutathione levels in some cell types. However, there are conflicting reports in the literature and it remains unclear as to whether erythrocytes can utilise extracellular glutathione to enhance the intracellular free glutathione pool. We have resolved this issue using a C-13-NMR approach. The novel use of L-gamma-glutamyl-L-cysteinyl-[2-C-13] glycine allowed the intra- and extracellular glutathione pools to be distinguished unequivocally, enabling the direct and non-invasive observation over time of the glutathione redox status in both compartments. The intracellular glutathione redox status was measured using H-1 spin-echo NMR, while C-13[H-1-decoupled] NMR experiments were used to measure the extracellular status. Extracellular glutathione was not oxidised in the incubations, and did not affect the intracellular glutathione redox status. Extracellular glutathione also did not affect erythrocyte glucose metabolism, as measured from the lactate-to-pyruvate ratio. The results reported here refute the previously attractive hypothesis that, in glucose-starved erythrocytes, extracellular GSH can increase intracellular GSH concentrations by releasing bound glutathione from mixed disulfides with membrane proteins.
Cytochrome P450-mediated metabolism of haloperidol and reduced haloperidol to pyridinium metabolites
Resumo:
Haloperidol ( HP) has been reported to undergo cytochrome P450 (P450)-mediated metabolism to potentially neurotoxic pyridinium metabolites; however, the chemical pathways and specific enzymes involved in these reactions remain to be identified. The aims of the current study were to (i) fully identify the cytochrome P450 enzymes capable of metabolizing HP to the pyridinium metabolite, 4-(4-chlorophenyl)- 1-(4-fluorophenyl)-4-oxobutylpyridinium (HPP+), and reduced HP (RHP) to 4-(4-chlorophenyl)- 1-(4-fluorophenyl)-4-hydroxybutylpyridinium (RHPP+); and (ii) determine whether 4-(4-chlorophenyl)- 1-(4-fluorophenyl)-4-oxobutyl-1,2,3,6-tetrahydropyridine (HPTP) and 4-(4-chlorophenyl)1-( 4-fluorophenyl)-4-hydroxybutyl-1,2,3,6-tetrahydropyridine (RHPTP) were metabolic intermediates in these pathways. In vitro studies were conducted using human liver microsomal preparations and recombinant human cytochrome P450 enzymes (P450s 1A1, 1A2, 1B1, 2A6, 2B6, 2C9, 2C19 2D6, 2E1, 3A4, 3A5, and 3A7) expressed in bicistronic format with human NADPH cytochrome P450 reductase in Escherichia coli membranes. Pyridinium formation from HP and RHP was highly correlated across liver preparations, suggesting the same enzyme or enzymes were responsible for both reactions. Cytochrome P450s 3A4, 3A5, and 3A7 were the only recombinant enzymes which demonstrated significant catalytic activity under optimized conditions, although trace levels of activity could be catalyzed by NADPHP450 reductase alone. NADPH-P450 reductase-mediated activity was inhibited by reduced glutathione but not catalase or superoxide dismutase, suggesting O-2-dependent oxidation. No evidence was obtained to support the contention that HPTP and RHPTP are intermediates in these pathways. K-m values for HPP+ (34 +/- 5 mu M) and RHPP+ (64 +/- 4 mu M) formation by recombinant P450 3A4 agreed well with those obtained with human liver microsomes, consistent with P450 3A4 being the major catalyst of pyridinium metabolite formation in human liver.
Resumo:
Neisseria gonorrhoeae is a host-adapted pathogen that colonizes primarily the human genitourinary tract. This bacterium encounters reactive oxygen and reactive nitrogen species as a consequence of localized inflammatory responses in the urethra of males and endocervix of females and also of the activity of commensal lactobacilli in the vaginal flora. This review describes recent advances in the understanding of defense systems against oxidative stress in N. gonorrhoeae and shows that while some of its defenses have similarities to the paradigm established with Escherichia coli, there are also some key differences. These differences include the presence of a defense system against superoxide based on manganese ions and a glutathione-dependent system for defense against nitric oxide which is under the control of a novel MerR-like transcriptional regulator. An understanding of the defenses against oxidative stress in N. gonorrhoeae and their regulation may provide new insights into the ways in which this bacterium survives challenges from polymorphonuclear leukocytes and urogenital epithelial cells.
Resumo:
Although cytosolic glutathione S-transterase (GST) enzymes occupy a key position in biological detoxification processes, two of the most relevant human isoenzymes. GST1-1 and GSTM1-1, are genetically deleted (non-functional alleles GSTT1*0 and GsTM1*0) in a high percentage of the human population, with major ethnic differences. The structures of the GSTT and GSTM gene areas explain the underlying genetic processes. GSTT1-1 is highly conserved during evolution and plays a major role in phase-II biotransformation of a number of drugs and industrial chemicals. e.g. cytostatic drugs, hydrocarbons and halogenated hydrocarbons. GSTM1-1 is particularly relevant in the deactivation of carcinogenic intermediates of polycyclic aromatic hydrocarbons. Several lines of evidence Suggest that hGSTT1-1 and/or hGSTM1-1 play a role in the deactivation of reactive oxygen species that are likely to be involved in cellular processes of inflammation, ageing and degenerative diseases. There is cumulating evidence that combinations of the GSTM1*0 state with other genetic traits affecting the metabolism of carcinogens (CYP1A1, GSTP1) may predispose the aero-digestivc tract and lung, especially in smokers, to a higher risk of cancer. The GSTM1*0 status appears also associated with a modest increase in the risk of bladder cancer, consistent with a GSTM1 interaction with carcinogenic tobacco smoke constituents. Both human GST deletions, although largely counterbalanced by overlapping substrate affinities within the GST superfamily, have consequences when the organism comes into contact with distinct man-made chemicals. This appears relevant in industrial toxicology and in drug metabolism.
Resumo:
The diflavo-protein NADPH cytochrome P450 reductase (CPR) is the key electron transfer partner for all drug metabolizing cytochrome P450 enzymes in humans. The protein delivers, consecutively, two electrons to the heme active site of the P450 in a carefully orchestrated process which ultimately leads to the generation of a high valent oxo-heme moiety. Despite its central role in P450 function, no direct electrochemical investigation of the purified protein has been reported. Here we report the first voltammetric study of purified human CPR where responses from both the FMN and FAD cofactors have been identified using both cyclic and square wave voltammetry. For human CPR redox responses at -2 and -278 mV (with a ratio of 1e(-):3e(-)) vs NHE were seen at pH 7.9 while the potentials for rat CPR at pH 8.0 were -20 and -254 mV. All redox responses exhibit a pH dependence of approximately -59 mV/pH unit consistent with proton coupled electron transfer reactions of equal stoichiometry. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Disulfide bonds are important structural motifs that play an essential role in maintaining the conformational stability of many bioactive peptides. Of particular importance are the conotoxins, which selectively target a wide range of ion channels that are implicated in numerous disease states. Despite the enormous potential of conotoxins as therapeutics, their multiple disulfide bond frameworks are inherently unstable under reducing conditions. Reduction or scrambling by thiol-containing molecules such as glutathione or serum albumin in intracellular or extracellular environments such as blood plasma can decrease their effectiveness as drugs. To address this issue, we describe a new class of selenoconotoxins where cysteine residues are replaced by selenocysteine to form isosteric and non-reducible diselenide bonds. Three isoforms of alpha-conotoxin ImI were synthesized by t-butoxycarbonyl chemistry with systematic replacement of one([ Sec(2,8)] ImI or [Sec(3,12)] ImI), or both([Sec(2,3,8,12)] ImI) disulfide bonds with a diselenide bond. Each analogue demonstrated remarkable stability to reduction or scrambling under a range of chemical and biological reducing conditions. Three-dimensional structural characterization by NMR and CD spectroscopy indicates conformational preferences that are very similar to those of native ImI, suggesting fully isomorphic structures. Additionally, full bioactivity was retained at the alpha(7) nicotinic acetylcholine receptor, with each seleno-analogue exhibiting a dose-response curve that overlaps with wild-type ImI, thus further supporting an isomorphic structure. These results demonstrate that selenoconotoxins can be used as highly stable scaffolds for the design of new drugs.
Resumo:
Deficiency of Glutathione S-transferases (GST) M1 and T1 are associated with chronic diseases (e.g. lung cancer, MS) and could be one factor for the risk for CHD.We conducted a pros-pective case-control study in 93 pts. with angiographically proven CHD and 161 controls matched for age ±2y and gender (resulting in n=91 pairs, of which 18 were female). Genes coding for functional GST M1 and T1 were analysed acoording to previously published methods. The association between GST M1, T1 was tested using Fisher's exact test; logistic regression analysis was performed to control for HDL-cholesterol, diabetes smoking, diabetes, hypertension. 41% of cases were smokers, 25% had diabetes and 68% hypertension, corresponding figures for controls were 31%, 13% and 33%. Mean HDL-cholesterol levels were comparable (pts: 46±14 mg/dl, controls: 43± 19 mg/dl). There was no overall significant correlation between functional GST T1 and M1 genotypes and CHD, however, there seems to be an association between GST M1, HDL-cholesterol and CHD. Larger studies are needed to verify these data.