23 resultados para Functional capacity evaluation
Resumo:
Objectives: To report the research and development of a new approach to Functional Capacity Evaluation, the Gibson Approach to Functional Capacity Evaluation (GAPP FCE) for chronic back pain clients. Methods: Four Studies, including pilot and feasibility testing, expert review, and preliminary interrater reliability examination, are described here. Participants included 7 healthy young adults and 19 rehabilitation clients with back pain who underwent assessment using the GAPP FCE. Thirteen therapists were trained in the approach and were silently observed administering the Functional Capacity Evalutions by at least 1 other trained therapists or the first investigator Or both. An expert review using 5 expert occupational therapists was also conducted. Results: Study 1, the pilot with healthy individuals, indicated that the GAPP FCE was a feasible approach with good utility. Study 2, a pilot using 2 trained therapists assessing 5 back pain clients, supported the clinical feasibility of the approach. The expert review in Study 3 found support for GAPP FCE. Study 4, a trial of the approach with 14 rehabilitation clients, found support for the interrater reliability of recommendations for return to work based on performance in the GAPP FCE. Discussion: The evidence thus far available supports the GAPP FCE as ail approach that provides a Sound method for evaluating the performance of the physical demands of work with clients with chronic back pain. The tool has been shown to have good face and content validity, to meet acceptable test standards, and to have reasonable interrater reliability. Further research is occurring to look at a larger interrater reliability study, to further examine content validity, and to examine predictive validity.
Resumo:
Although safety is recognized as a critical issue in functional capacity evaluations (FCEs), it has rarely been investigated. This paper reports on the findings of a study which examined safety aspects of a new approach to FCE. Fourteen rehabilitation clients with chronic back pain participated in the study. Aspects examined included the pre-FCE screening procedures, the monitoring of performance and safety during the FCE, and the end of FCE measures and follow-up procedures. Support was found for the screening procedures of the approach, particularly blood pressure measurement, and for the combined approach to monitoring of the persons performance from biomechanical, physiological and psychophysical perspectives. Issues for FCE safety in general are identified and discussed, including the importance of screening procedures to determine readiness for FCEs and the issue of load handling in FCEs, especially in relation to clients with chronic back pain.
Resumo:
This study assessed the item validity of 15 of the physical demands from the Dictionary of Occupational Titles (DOT), as evaluated in a new approach to functional capacity evaluation (FCE) for clients with chronic back pain, the Gibson Approach to FCE (GAPP FCE). Fifty-two occupational therapists were sent the specifications of the items in the GAPP FCE procedures and were asked to rate the items in terms of item-objective congruence, relevance and difficulty. A response rate of 59.2% was obtained. The majority of the therapists agreed that most of the items were congruent with the objectives based on the definition of the physical demands from the DOT. The items evaluating Balancing and Pushing and Pulling had the lowest item-objective congruence. The evaluation of Balancing and the Lifting, Carrying and Pushing and Pulling of loads greater than light-medium weight (10–16 kg) were not considered significantly relevant. Concerns were raised about the difficulty and safety of the evaluation of Lifting, Carrying and Pushing and Pulling with clients with chronic back pain, particularly if the therapist evaluates the manual handling of medium to heavy loads. These results may have implications for other FCEs, particularly those which are based on the DOT, or when assessing clients with chronic back pain.
Resumo:
Background Previous work suggesting a better correlation of diastolic than systolic function with exercise capacity in heart failure may reflect the -relative insensitivity and load-dependence of ejection fraction (EF). We sought the correlation of new and more sensitive methods of quantifying systolic and diastolic function and filling pressure with functional capacity. Methods We studied 155 consecutive exercise tests on 95 patients with congestive heart failure (81 male, aged 62 +/- 10 years), who underwent resting 2-climensional echocardiography and tissue Doppler imaging before and after measurement of maximum oxygen uptake (peak VO2)Results The resting EF was 3 1 % 10% and a peak VO(2)was 13 +/- 5 mL/kg/min; the majority of these patients (80%) had an ischemic cardiornyopathy. Resting EF (r 0.14, P =.09) correlated poorly with peak VO2 and mean systolic (r = 0.23, P =.004) and diastolic tissue velocities (r 0.18, P =.02). Peak EF was weakly correlated with the mean systolic (r = 0.18, P =.02) and diastolic velocities (r = 0.16, P <.04). The mean sum of systolic and diastolic velocities in both annuli (r = 0.30, P <.001) and E/Ea ratio (r 0.31, P <.001) were better correlated with peak VO2 Prediction of peak VO2 was similar with models based on models of filling pressure (R = 0.61), systolic factors (R = 0.63), and diastolic factors (R 0.59), although a composite model of filling pressure, systolic and diastolic function was a superior predictor of peak VO2 (R 0.69; all P<.001). Conclusions The reported association of diastolic rather than systolic function with functional capacity may have reflected the limitations of EF. Functional capacity appears related not only to diastolic function, but also to systolic function and filling pressure, and is most closely associated with a combination of these factors.
Resumo:
Background: The Functional Capacity Index (FCI) was designed to predict physical function 12 months after injury. We report a validation study of the FCI. Methods: This was a consecutive case series registered in the Queensland Trauma Registry who consented to the prospective 12-month telephone-administered follow-up study. FCI scores measured at 12 months were compared with those originally predicted. Results: Complete Abbreviated Injury Scale score information was available for 617 individuals, of whom 587 (95%) could be assigned at least one FCI score (range, 1-17). Agreement between the largest predicted FCI and observed FCI score was poor (kappa = 0.05; 95% confidence interval, 0.00-0.10) and explained only 1% of the variability in observed FCI. Using an encompassing model that included all FCI assignments, agreement remained poor (kappa = 0.05; 95% confidence interval, -0.02-0.12), and the model explained only 9% of the variability in observed FCI. Conclusion: The predicted functional capacity poorly agrees with actual functional outcomes. Further research should consider including other (noninjury) explanatory factors in predicting FCI at 12 months.
Resumo:
Background: There is a recognized need to move from mortality to morbidity outcome predictions following traumatic injury. However, there are few morbidity outcome prediction scoring methods and these fail to incorporate important comorbidities or cofactors. This study aims to develop and evaluate a method that includes such variables. Methods: This was a consecutive case series registered in the Queensland Trauma Registry that consented to a prospective 12-month telephone conducted follow-up study. A multivariable statistical model was developed relating Trauma Registry data to trichotomized 12-month post-injury outcome (categories: no limitations, minor limitations and major limitations). Cross-validation techniques using successive single hold-out samples were then conducted to evaluate the model's predictive capabilities. Results: In total, 619 participated, with 337 (54%) experiencing no limitations, 101 (16%) experiencing minor limitations and 181 (29%) experiencing major limitations 12 months after injury. The final parsimonious multivariable statistical model included whether the injury was in the lower extremity body region, injury severity, age, length of hospital stay, pulse at admission and whether the participant was admitted to an intensive care unit. This model explained 21% of the variability in post-injury outcome. Predictively, 64% of those with no limitations, 18% of those with minor limitations and 37% of those with major limitations were correctly identified. Conclusion: Although carefully developed, this statistical model lacks the predictive power necessary for its use as a basis of a useful prognostic tool. Further research is required to identify variables other than those routinely used in the Trauma Registry to develop a model with the necessary predictive utility.
Resumo:
Side population (SP) cells in the adult kidney are proposed to represent a progenitor population. However, the size, origin, phenotype, and potential of the kidney SP has been controversial. In this study, the SP fraction of embryonic and adult kidneys represented 0.1 to 0.2% of the total viable cell population. The immunophenotype and the expression profile of kidney SP cells was distinct from that of bone marrow SP cells, suggesting that they are a resident nonhematopoietic cell population. Affymetrix expression profiling implicated a role for Notch signaling in kidney SP cells and was used to identify markers of kidney SP. Localization by in situ hybridization confirmed a primarily proximal tubule location, supporting the existence of a tubular niche, but also revealed considerable heterogeneity, including the presence of renal macrophages. Adult kidney SP cells demonstrated multilineage differentiation in vitro, whereas microinjection into mouse metanephroi showed that SP cells had a 3.5- to 13-fold greater potential to contribute to developing kidney than non-SP main population cells. However, although reintroduction of SP cells into an Adriamycin-nephropathy model reduced albuminuria:creatinine ratios, this was without significant tubular integration, suggesting a humoral role for SP cells in renal repair. The heterogeneity of the renal SP highlights the need for further fractionation to distinguish the cellular subpopulations that are responsible for the observed multilineage capacity and transdifferentiative and humoral activities.
Resumo:
Background. Exercise therapy improves functional capacity in CHF, but selection and individualization of training would be helped by a simple non-invasive marker of peak VO2. Peak VO2 in these pts is difficult to predict without direct measurement, and LV ejection fraction is a poor predictor. Myocardial tissue velocities are less load-dependent, and may be predictive of the exercise response in CHF pts. We sought to use tissue velocity as a predictor of peak VO2 in CHF pts. Methods. Resting 2D-echocardiography and tissue Doppler imaging were performed in 182 CHF pts (159 male, age 62±10 years) before and after metabolic exercise testing. The majority of these patients (129, 71%) had an ischemic cardiomyopathy, with resting EF of 35±13% and a peak VO2 of 13.5±4.7 ml/kg/min. Results. Neither resting EF (r=0.15) nor peak EF (r=0.18, both p=NS) were correlated with peak VO2. However, peak VO2 correlated with peak systolic velocity in septal (Vss, r=0.31) and lateral walls (Vsl, r=0.26, both p=0.01). In a general linear model (r2 = 0.25), peak VO2 was calculated from the following equation: 9.6 + 0.68*Vss - 0.09*age + 0.06*maximum HR. This model proved to be a superior predictor of peak VO2 (r=0.51, p=0.01) than the standard prediction equations of Wasserman (r= -0.12, p=0.01). Conclusions. Resting tissue Doppler, age and maximum heart rate may be used to predict functional capacity in CHF patients. This may be of use in selecting and following the response to therapy, including for exercise training.