18 resultados para Finite field
Resumo:
What is the computational power of a quantum computer? We show that determining the output of a quantum computation is equivalent to counting the number of solutions to an easily computed set of polynomials defined over the finite field Z(2). This connection allows simple proofs to be given for two known relationships between quantum and classical complexity classes, namely BQP subset of P-#P and BQP subset of PP.
Resumo:
We give a detailed exposition of the theory of decompositions of linearised polynomials, using a well-known connection with skew-polynomial rings with zero derivative. It is known that there is a one-to-one correspondence between decompositions of linearised polynomials and sub-linearised polynomials. This correspondence leads to a formula for the number of indecomposable sub-linearised polynomials of given degree over a finite field. We also show how to extend existing factorisation algorithms over skew-polynomial rings to decompose sub-linearised polynomials without asymptotic cost.
Resumo:
This paper presents a finite-difference time-domain (FDTD) simulator for electromagnetic analysis and design applications in MRI. It is intended to be a complete FDTD model of an MRI system including all RF and low-frequency field generating units and electrical models of the patient. The pro-ram has been constructed in an object-oriented framework. The design procedure is detailed and the numerical solver has been verified against analytical solutions for simple cases and also applied to various field calculation problems. In particular, the simulator is demonstrated for inverse RF coil design, optimized source profile generation, and parallel imaging in high-frequency situations. The examples show new developments enabled by the simulator and demonstrate that the proposed FDTD framework can be used to analyze large-scale computational electromagnetic problems in modern MRI engineering. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
We show that the projected Gross-Pitaevskii equation (PGPE) can be mapped exactly onto Hamilton's equations of motion for classical position and momentum variables. Making use of this mapping, we adapt techniques developed in statistical mechanics to calculate the temperature and chemical potential of a classical Bose field in the microcanonical ensemble. We apply the method to simulations of the PGPE, which can be used to represent the highly occupied modes of Bose condensed gases at finite temperature. The method is rigorous, valid beyond the realms of perturbation theory, and agrees with an earlier method of temperature measurement for the same system. Using this method we show that the critical temperature for condensation in a homogeneous Bose gas on a lattice with a uv cutoff increases with the interaction strength. We discuss how to determine the temperature shift for the Bose gas in the continuum limit using this type of calculation, and obtain a result in agreement with more sophisticated Monte Carlo simulations. We also consider the behavior of the specific heat.
Resumo:
Coherent Ge(Si)/Si(001) quantum dot islands grown by solid source molecular beam epitaxy at a growth temperature of 700degreesC were investigated using transmission electron microscopy working at 300 kV. The [001] zone-axis bright-field diffraction contrast images of the islands show strong periodicity with the change of the TEM sample substrate thickness and the period is equal to the effective extinction distance of the transmitted beam. Simulated images based on finite element models of the displacement field and using multi-beam dynamical diffraction theory show a high degree of agreement. Studies for a range of electron energies show the power of the technique for investigating composition segregation in quantum dot islands. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Representations of the superalgebra osp(2/2)(k)((1)) and current superalgebra. osp(2/2)k in the standard basis are investigated. All finite-dimensional typical and atypical representations of osp(2/2) are constructed by the vector coherent state method. Primary fields of the non-unitary conformal field theory associated with osp(2/2)(k)((1)) in the standard basis are obtained for arbitrary level k. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A finite-difference time-domain (FDTD) thermal model has been developed to compute the temperature elevation in the Sprague Dawley rat due to electromagnetic energy deposition in high-field magnetic resonance imaging (MRI). The field strengths examined ranged from 11.75-23.5 T (corresponding to H-1 resonances of 0.5-1 GHz) and an N-stub birdcage resonator was used to both transmit radio-frequency energy and receive the MRI signals. With an in-plane resolution of 1.95 mm, the inhomogeneous rat phantom forms a segmented model of 12 different tissue types, each having its electrical and thermal parameters assigned. The steady-state temperature distribution was calculated using a Pennes 'bioheat' approach. The numerical algorithm used to calculate the induced temperature distribution has been successfully validated against analytical solutions in the form of simplified spherical models with electrical and thermal properties of rat muscle. As well as assisting with the design of MRI experiments and apparatus, the numerical procedures developed in this study could help in future research and design of tumour-treating hyperthermia applicators to be used on rats in vivo.
Resumo:
We analyse the relation between local two-atom and total multi-atom entanglements in the Dicke system composed of a large number of atoms. We use concurrence as a measure of entanglement between two atoms in the multi-atom system, and the spin squeezing parameter as a measure of entanglement in the whole n-atom system. In addition, the influence of the squeezing phase and bandwidth on entanglement in the steady-state Dicke system is discussed. It is shown that the introduction of a squeezed field leads to a significant enhancement of entanglement between two atoms, and the entanglement increases with increasing degree of squeezing and bandwidth of the incident squeezed field. In the presence of a coherent field the entanglement exhibits a strong dependence on the relative phase between the squeezed and coherent fields, that can jump quite rapidly from unentangled to strongly entangled values when the phase changes from zero to pi. We find that the jump of the degree of entanglement is due to a flip of the spin squeezing from one quadrature component of the atomic spin to the other component when the phase changes from zero to pi. We also analyse the dependence of the entanglement on the number of atoms and find that, despite the reduction in the degree of entanglement between two atoms, a large entanglement is present in the whole n-atom system and the degree of entanglement increases as the number of atoms increases.
Resumo:
The non-semisimple gl(2)k current superalgebra in the standard basis and the corresponding non-unitary conformal field theory are investigated. Infinite families of primary fields corresponding to all finite-dimensional irreducible typical and atypical representations of gl(212) and three (two even and one odd) screening currents of the first kind are constructed explicitly in terms of ten free fields. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
We extend the projected Gross-Pitaevskii equation formalism of Davis [Phys. Rev. Lett. 87, 160402 (2001)] to the experimentally relevant case of thermal Bose gases in harmonic potentials and outline a robust and accurate numerical scheme that can efficiently simulate this system. We apply this method to investigate the equilibrium properties of the harmonically trapped three-dimensional projected Gross-Pitaevskii equation at finite temperature and consider the dependence of condensate fraction, position, and momentum distributions and density fluctuations on temperature. We apply the scheme to simulate an evaporative cooling process in which the preferential removal of high-energy particles leads to the growth of a Bose-Einstein condensate. We show that a condensate fraction can be inferred during the dynamics even in this nonequilibrium situation.
Resumo:
We present Ehrenfest relations for the high temperature stochastic Gross-Pitaevskii equation description of a trapped Bose gas, including the effect of growth noise and the energy cutoff. A condition for neglecting the cutoff terms in the Ehrenfest relations is found which is more stringent than the usual validity condition of the truncated Wigner or classical field method-that all modes are highly occupied. The condition requires a small overlap of the nonlinear interaction term with the lowest energy single particle state of the noncondensate band, and gives a means to constrain dynamical artefacts arising from the energy cutoff in numerical simulations. We apply the formalism to two simple test problems: (i) simulation of the Kohn mode oscillation for a trapped Bose gas at zero temperature, and (ii) computing the equilibrium properties of a finite temperature Bose gas within the classical field method. The examples indicate ways to control the effects of the cutoff, and that there is an optimal choice of plane wave basis for a given cutoff energy. This basis gives the best reproduction of the single particle spectrum, the condensate fraction and the position and momentum densities.
Resumo:
In modern magnetic resonance imaging, both patients and health care workers are exposed to strong. non-uniform static magnetic fields inside and outside of the scanner. In which body movement may be able to induce electric currents in tissues which could be potentially harmful. This paper presents theoretical investigations into the spatial distribution of induced E-fields in a tissue-equivalent human model when moving at various positions around the magnet. The numerical calculations are based on an efficient. quasi-static, finite-difference scheme. Three-dimensional field profiles from an actively shielded 4 T magnet system are used and the body model projected through the field profile with normalized velocity. The simulation shows that it is possible to induce E-fields/currents near the level of physiological significance under some circumstances and provides insight into the spatial characteristics of the induced fields. The methodology presented herein can be extrapolated to very high field strengths for the evaluation of the effects of motion at a variety of field strengths and velocities. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The paper presents a method for designing circular, shielded biplanar coils that can generate any desired field. A particular feature of these coils is that the target field may be located asymmetrically within the coil. A transverse component of the magnetic field produced by the coil is made to match a prescribed target field over the surfaces of two concentric spheres (the diameter of spherical volume) that define the target field location. The paper shows winding patterns and fields for several gradient and shim coils. It examines the effect that the finite coil size has on the winding patterns, using a Fourier-transform calculation for comparison.
Resumo:
A new method for ameliorating high-field image distortion caused by radio frequency/tissue interaction is presented and modeled, The proposed method uses, but is not restricted to, a shielded four-element transceive phased array coil and involves performing two separate scans of the same slice with each scan using different excitations during transmission. By optimizing the amplitudes and phases for each scan, antipodal signal profiles can be obtained, and by combining both images together, the image distortion can be reduced several-fold. A hybrid finite-difference time-domain/method-of-moments method is used to theoretically demonstrate the method and also to predict the radio frequency behavior inside the human head. in addition, the proposed method is used in conjunction with the GRAPPA reconstruction technique to enable rapid imaging. Simulation results reported herein for IIT (470 MHz) brain imaging applications demonstrate the feasibility of the concept where multiple acquisitions using parallel imaging elements with GRAPPA reconstruction results in improved image quality. (c) 2006 Wiley Periodicals, Inc.
Resumo:
Due to complex field/tissue interactions, high-field magnetic resonance (MR) images suffer significant image distortions that result in compromised diagnostic quality. A new method that attempts to remove these distortions is proposed in this paper and is based on the use of transceiver-phased arrays. The proposed system uses, in the examples presented herein, a shielded four-element transceive-phased array head coil and involves performing two separate scans of the same slice with each scan using different excitations during transmission. By optimizing the amplitudes and phases for each scan, antipodal signal profiles can be obtained, and by combining both the images together, the image distortion can be reduced several fold. A combined hybrid method of moments (MoM)/finite element method (FEM) and finite-difference time-domain (FDTD) technique is proposed and used to elucidate the concept of the new method and to accurately evaluate the electromagnetic field (EMF) in a human head model. In addition, the proposed method is used in conjunction with the generalized auto-calibrating partially parallel acquisitions (GRAPPA) reconstruction technique to enable rapid imaging of the two scans. Simulation results reported herein for 11-T (470-MHz) brain imaging applications show that the new method with GRAPPA reconstruction theoretically results in improved image quality and that the proposed combined hybrid MoM/FEM and FDTD technique is. suitable for high-field magnetic resonance imaging (MRI) numerical analysis.