70 resultados para Eutectic Solidification Mode
Resumo:
The effect of eutectic modification by strontium on nucleation and growth of the eutectic in hypoeutectic Al-Si foundry alloys has been investigated by electron back-scattering diffraction (EBSD) mapping. Specimens were prepared from three hypoeutectic AlSi base alloys with 5, 7 and 10 mass%Si and with different strontium contents up to 740 ppm for modification of eutectic silicon. By comparing the orientation of the aluminium in the eutectic to that of the surrounding primary aluminium dendrites? the growth mode of the eutectic could be determined. The mapping results indicate that the eutectic grew from the primary phase in unmodified alloys. When the eutectic was modified by strontium, eutectic grains nucleated separately from the primary dendrites. However, in alloys with high strontium levels, the eutectic again grew from the primary phase. These observed effects of strontium additions on the eutectic solidification mode are independent of silicon content in the range between 5 and 10 mass%Si.
Resumo:
The influence of sodium (Na) on nucleation and growth of the Al-Si eutectic in a commercial hypoeutectic Al-Si-Cu-Mg foundry alloy has been investigated. The microstructural evolution during eutectic solidification was studied by a quenching technique. By comparing the orientation of the aluminium in the eutectic to that of the surrounding primary aluminium dendrites by EBSD, the eutectic solidification mode could be determined. The results show that the eutectic solidification starts near the mould wall and evolves with front growth opposite the thermal gradient on a macro-scale, and on a micro-scale with independent heterogeneous nucleation of eutectic grains in interdendritic spaces. Na-modified alloys therefore behave significantly differently from those modified by other elemental additions.
Resumo:
The effect of strontium (Sr), antimony (Sb) and phosphorus (P) on nucleation and growth mode of the eutectic in hypoeutectic Al-10 mass%Si alloys has been investigated by electron back-scattering diffraction (EBSD) mapping. Specimens were prepared from a hypoeutectic Al-10 mass%Si base alloy, adding different levels of strontium, antimony and phosphorus for modification of eutectic silicon. By comparing the orientation of the aluminium in the eutectic to that of the surrounding primary aluminium dendrites, the solidification mode of the eutectic could be determined. The results of these studies show that the eutectic nucleation mode, and subsequent growth mode, is strongly dependent on additive elements. The EBSD mapping results indicate that the eutectic grew from the primary phase in unmodified and phosphorus-containing alloys. When the eutectic was modified by strontium or antimony, eutectic grains nucleated and grew separately from the primary dendrites.
Resumo:
Nucleation and growth of the eutectic, in hypoeutectic Al-Si foundry alloys has been investigated by the electron backscatter diffraction (EBSD) mapping technique using a scanning electron microscope (SEM). Sample preparation procedures for optimizing mapping have been developed. To obtain a sufficiently smooth surface from a cast Al-Si eutectic microstructure for EBSD mapping, an appropriate preparation technique by ion milling was developed and applied instead of conventional electropolishing. By comparing the orientation of the aluminum in the eutectic to that of the surrounding primary aluminum dendrites, the growth mechanism of the eutectic can be determined. Two different results were found, in isolation or sometimes together, but distinct for different strontium contents: (1) crystallographic orientations of aluminum in eutectic and surrounding primary dendrites are identical, and (2) wide variation in orientations of the aluminum in the eutectic. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
The effects of different concentrations of individual additions of rare earth metals (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) on eutectic modification in Al-10mass%Si has been studied by thermal analysis and optical microscopy. According to the twin-plane re-entrant edge (TPRE) and impurity induced twinning mechanism, rare earth metals with atomic radii of about 1.65 times larger than that of silicon, are possible candidates for eutectic modification. All of the rare earth elements caused a depression of the eutectic growth temperature, but only Eu modified the eutectic silicon to a fibrous morphology. At best, the remaining elements resulted in only a small degree of refinement of the plate-like silicon. The samples were also quenched during the eutectic arrest to examine the eutectic solidification modes. Many of the rare-earth additions significantly altered the eutectic solidification mode from that of the unmodified alloy. It is concluded that the impurity induced twinning model of modification, based on atomic radius alone, is inadequate and other mechanisms are essential for the modification process. Furthermore, modification and the eutectic nucleation and growth modes are controlled independently of each other.
Resumo:
Understanding and controlling the eutectic solidification process in Al-Si alloys permits prediction of the formation of casting porosity, eventually leading to methods for its control and elimination. In addition, it enables control of eutectic structure, silicon morphology, and eutectic grain size to further improve the alloy properties. This paper presents the current understanding of eutectic solidification in hypoeutectic Al-Si foundry alloys and the relationship between eutectic solidification and porosity formation. New concepts in engineering eutectic solidification are also explored.
A rheological assessment of the effect of trace level Ni additions on the solidification of Sn-0.7Cu
Resumo:
The influence of trace level Ni additions on the eutectic solidification mode of Sn-0.7Cu has been studied using continuous torque experiments during solidification. The solid fraction at which resistance to paddle rotation at the thermal centre of the sample occurs is related to the spatial distribution of solid during solidification. The results indicate that a transition in solidification mode occurs in the range 0-300 ppm Ni. Growth occurs antiparallel to heat flow from near the mould walls in the Ni-free alloy, while equiaxed growth from distributed centres dominates in alloys containing at least 300 ppm Ni. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The formation of the Al-Si eutectic is generally the final stage of the solidification process of Al-Si foundry alloys. This means that it can be expected to have a significant impact on the feeding of a casting, and consequently the formation of casting defects, in particular porosity. Understanding and controlling the eutectic solidification process are therefore very important. This paper reviews the recent advances and unique techniques used in improving our understanding of both eutectic nucleation and growth. The role of different modifiers in controlling the eutectic solidification mechanisms is presented and the relationship between eutectic solidification mechanisms and porosity formation is outlined. This new approach to aluminium foundry alloy metallurgy is likely to form the basis for further optimisation of alloy performance and master alloys for the future.
Resumo:
Strontium modification is known to alter the amount, characteristics, and distribution of porosity in Al-Si castings. Although many theories have been proposed to account for these effects, most can be considered inadequate because of their failure to resolve contradictions and discrepancies in the literature. In an attempt to critically appraise some of these theories, the amount, distribution, and morphology of porosity were examined in sand-cast plates of Sr-free and Sr-containing pure Al, Al-l wt pet Si, and Al-9 wt pet Si alloys. Statistical significance testing was used to verify apparent trends in the porosity data. No apparent differences in the amount, distribution, and morphology of porosity were observed between Sr-free and Sr-containing alloys with no or very small eutectic volume fractions. However, Sr modification significantly changed the amount, distribution, and morphology of porosity in alloys with a significant volume fraction of eutectic. ne addition of Sr reduced porosity in the hot spot region of the casting, and the pores became well dispersed and rounded. This result can be explained by considering the combined effect of the casting design and the differences in the pattern of eutectic solidification between unmodified and Sr-modified alloys.