28 resultados para Enamel Erosion
Resumo:
Background: Dental erosion is highly prevalent today, and acidic drinks are thought to be an important cause. The aim of the present investigation was to determine the erosive potential of a range of common beverages on extracted human teeth. Methods: The beverages were tested for their individual pHs using a pH meter. The clinical effects of the most erosive beverages were determined by the degree of etching and Vickers microhardness of enamel. Results: The results showed that many common beverages have pHs sufficiently low to cause enamel erosion. Lime juice concentrate (pH 2.1) had the lowest pH, followed by Coca-cola and Pepsi (both with pH 2.3) and Lucozade (pH 2.5). The erosive potential of these beverages was demonstrated by the deep etching of the enamel after five minutes. The Vickers Hardness of enamel was reduced by about 50 per cent is the case of lime juice (p < 0.001) and 24 per cent in the case of Coca-cola (p < 0.004). Addition of saliva to 50 per cent (v/v) of Coca-cola completely reversed the erosive effects on the enamel. Conclusion: Although only a few of the beverages with the lowest pHs were tested, the present study showed that the most acidic drinks had the greatest erosive effects on enamel. While saliva was protective against erosion, relatively large volumes were required to neutralize the acidity.
Resumo:
Numerous studies in the last 60 years have investigated the relationship between land slope and soil erosion rates. However, relatively few of these have investigated slope gradient responses: ( a) for steep slopes, (b) for specific erosion processes, and ( c) as a function of soil properties. Simulated rainfall was applied in the laboratory on 16 soils and 16 overburdens at 100 mm/h to 3 replicates of unconsolidated flume plots 3 m long by 0.8 m wide and 0.15 m deep at slopes of 20, 5, 10, 15, and 30% slope in that order. Sediment delivery at each slope was measured to determine the relationship between slope steepness and erosion rate. Data from this study were evaluated alongside data and existing slope adjustment functions from more than 55 other studies from the literature. Data and the literature strongly support a logistic slope adjustment function of the form S = A + B/[1 + exp (C - D sin theta)] where S is the slope adjustment factor and A, B, C, and D are coefficients that depend on the dominant detachment and transport processes. Average coefficient values when interill-only processes are active are A - 1.50, B 6.51, C 0.94, and D 5.30 (r(2) = 0.99). When rill erosion is also potentially active, the average slope response is greater and coefficient values are A - 1.12, B 16.05, C 2.61, and D 8.32 (r(2) = 0.93). The interill-only function predicts increases in sediment delivery rates from 5 to 30% slope that are approximately double the predictions based on existing published interill functions. The rill + interill function is similar to a previously reported value. The above relationships represent a mean slope response for all soils, yet the response of individual soils varied substantially from a 2.5-fold to a 50-fold increase over the range of slopes studied. The magnitude of the slope response was found to be inversely related ( log - log linear) to the dispersed silt and clay content of the soil, and 3 slope adjustment equations are proposed that provide a better estimate of slope response when this soil property is known. Evaluation of the slope adjustment equations proposed in this paper using independent datasets showed that the new equations can improve soil erosion predictions.
Resumo:
Diet analysis and advice for patients with tooth wear is potentially the most logical intervention to arrest attrition, erosion and abrasion. It is saliva that protects the teeth against corrosion by the acids which soften enamel and make it susceptible to wear. Thus the lifestyles and diet of patients at risk need to be analysed for sources of acid and reasons for lost salivary protection. Medical conditions which put patients at risk of tooth wear are principally: asthma, bulimia nervosa, caffeine addiction, diabetes mellitus, exercise dehydration, functional depression, gastroesophageal reflux in alcoholism, hypertension and syndromes with salivary hypofunction. The sources of acid are various, but loss of salivary protection is the common theme. In healthy young Australians, soft drinks are the main source of acid, and exercise dehydration the main reason for loss of salivary protection. In the medically compromised, diet acids and gastroesophageal reflux are the sources, but medications are the main reasons for lost salivary protection. Diet advice for patients with tooth wear must: promote a healthy lifestyle and diet strategy that conserves the teeth by natural means of salivary stimulation; and address the specific needs of the patients' oral and medical conditions. Individualised, patient-empowering erosion WATCH strategies; on Water, Acid, Taste, Calcium and Health, are urgently required to combat the emerging epidemic of tooth wear currently being experienced in westernised societies.
Resumo:
Purpose: The aim of this study was to examine the enamel thickness of the maxillary primary incisors of preterm children with very low birth weight (< 1,500 g) compared to full-term children with normal birth weight. Methods: A total of 90 exfoliated maxillary primary central incisors were investigated using light microscopy and scanning electron microscopy (SEM). Three serial buccolingual ground sections of each tooth were examined under light microscopy, and maximum dimensions of the prenatally and postnatally formed enamel were measured. Results: The enamel of preterm teeth was approximately 20% thinner than that for fullterm teeth. Most of the reduction was observed in the prenatally formed enamel. This was 5 to 13 times thinner than that for full-term children (P < .001). The catch-up thickness of postnatally formed enamel did not compensate fully for the decrease in prenatal enamel (P < .001). Although none of the teeth used in this study had enamel defects visible to the naked eye, 52% of preterm teeth showed enamel hypoplasia under SEM, compared with only 16% found on full-term teeth (P < .001). These defects were present as pits or irregular, shallow areas of missing enamel. Conclusions: Preterm primary dental enamel is abnormal in surface quality, and is significantly thinner compared to full-term enamel. The thinner enamel is due mainly to reduced prenatal growth and results in smaller dimensions of the primary dentition.
Resumo:
A novel apparatus, high-pressure/high-temperature nickel flow loop, was constructed to study the effect of the flow on the rate of erosion-corrosion of mild steel in hot caustic. It has been successfully used to measure the corrosion rate of 1020 steel in 2.75 M NaOH solution at a temperature of 160 degrees C and velocities of 0.32 and 2.5 m/s. In situ electrochemical methods were used to measure the corrosion rate such as the potentiodynamic sweep, the polarization resistance method, and electrochemical impedance spectroscopy (EIS). Also used were the weight-loss method and scanning electron microscopy (SEM). Eight electrodes/coupons were used to monitor the metal loss rate, four were placed at the low velocity section, while the other four were placed in the high velocity section. The first three coupons in each section were placed within the disturbed flow region, while the fourth was placed in a fully developed flow region. The corrosion rate of the coupons in the high velocity section was generally higher than that of the coupons in the low velocity section. One coupon in the disturbed flow region had a significantly higher corrosion rate than the others. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Corrosion rates of 1020 steel in 2.75 M NaOH solution at a temperature of 160 degrees C and velocities of 0.32 and 2.5 m/s were studied. The focus was on the effect of the acid cleaning which was performed by using strong, inhibited sulphuric acid in between the exposures to caustic. In situ electrochemical methods were used to measure the corrosion rate such as the potentiodynamic sweep and the polarization resistance method. Also used were the weight-loss method and scanning electron microscopy (SEM). Eight electrodes/coupons were used to monitor the metal loss rate, four were placed at the low velocity section, while the other four were placed in the high velocity section of a high temperature flow. The first three coupons in each section were placed within the disturbed flow region, while the fourth was placed in a fully developed flow region. During the exposure of mild steel to the inhibited acid, following the first caustic period, the corrosion rate increased significantly to between 3 and 10mm/y with a few electrodes experiencing as high as 50 mm/y. The second caustic period following the acidic period typically started with very high corrosion rates (20-80 mm/y). The length of this corrosion period was typically 2-3 h with a few exceptions when the high corrosion period lasted 7-10 h. Following the very high corrosion rates experienced at the beginning of the second caustic period, the corrosion rates were reduced sharply (as the corrosion potential increased) to nearly the same levels as those observed during the passive part of the first caustic period. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Objectives. Receptor activator of NF-kappa B ligand (RANKL) and osteoprotegerin (OPG) have been demonstrated to be critical regulators of osteoclast generation and activity. In addition, RANKL has been implicated as an important mediator of bone erosion in rheumatoid arthritis (RA). However, the expression of RANKL and OPG at sites of pannus invasion into bone has not been examined. The present study was undertaken to further elucidate the contribution of this cytokine system to osteoclastogenesis and subsequent bone erosion in RA by examining the pattern of protein expression for RANKL, OPG and the receptor activator of NF-kappa B (RANK) in RA at sites of articular bone erosion. Methods. Tissues from 20 surgical procedures from 17 patients with RA were collected as discarded materials. Six samples contained only synovium or tenosynovium remote from bone, four samples contained pannus-bone interface with adjacent synovium and 10 samples contained both synovium remote from bone and pannu-bone interface with adjacent synovium. Immunohistochemistry was used to characterize the cellular pattern of RANKL, RANK and OPG protein expression immediately adjacent to and remote from sites of bone erosion. Results. Cellular expression of RANKL protein was relatively restricted in the bone microenvironment; staining was focal and confined largely to sites of osteoclast-mediated erosion at the pannus-bone interface and at sites of subchondral bone erosion. RANK-expressing osteoclast precursor cells were also present in these sites. OPG protein expression was observed in numerous cells in synovium remote from bone but was more limited at sites of bone erosion, especially in regions associated with RANKL expression. Conclusions. The pattern of RANKL and OPG expression and the presence of RANK-expressing osteoclast precursor cells at sites of bone erosion in RA contributes to the generation of a local microenvironment that favours osteoclast differentiation and activity. These data provide further evidence implicating RANKL in the pathogenesis of arthritis-induced joint destruction.
Resumo:
Computational fluid dynamics was used to search for the links between the observed pattern of attack seen in a bauxite refinery's heat exchanger headers and the hydrodynamics inside the header. Validation of the computational fluid dynamics results was done by comparing then with flow parameters measured in a 1:5 scale model of the first pass header in the laboratory. Computational fluid dynamics simulations were used to establish hydrodynamic similarity between the 1:5 scale and full scale models of the first pass header. It was found that the erosion-corrosion damage seen at the tubesheet of the first pass header was a consequence of increased levels of turbulence at the tubesheet caused by a rapidly turning flow. A prismatic flow corrections device introduced in the past helped in rectifying the problem at the tubesheet but exaggerated the erosion-corrosion problem at the first pass header shell. A number of alternative flow correction devices were tested using computational fluid dynamics. Axial ribbing in the first pass header and an inlet flow diffuser have shown the best performance and were recommended for implementation. Computational fluid dynamics simulations have revealed a smooth orderly low turbulence flow pattern in the second, third and fourth pass as well as the exit headers where no erosion-corrosion was seen in practice. This study has confirmed that near-wall turbulence intensity, which can be successfully predicted by using computational fluid dynamics, is a good hydrodynamic predictor of erosion-corrosion damage in complex geometries. (c) 2006 Published by Elsevier Ltd.
Resumo:
We present AUSLEM (AUStralian Land Erodibility Model), a land erodibility modelling system that utilizes a rule-set of surficial and climatic thresholds applied through a Geographic Information System (GIs) modelling framework to predict landscape susceptibility to wind erosion. AUSLEM is distinctive in that it quantitatively assesses landscape susceptibility to wind erosion at a 5 x 5 km. spatial resolution on a monthly time-step across Australia. The system was implemented for representative wet (1984), dry (1994), and average rainfall (1997) years with corresponding low, high and moderate dust storm day frequencies. Results demonstrate that AUSLEM can identify landscape erodibility, and provide an interpretation of the physical nature and distribution of erodible landscapes in Australia. Further, results offer an assessment of the dynamic tendencies of erodibility in space and time in response to the El Nino Southern Oscillation (ENSO) and seasonal synoptic scale climate variability. A comparative analysis of AUSLEM output with independent national and international wind erosion, atmospheric aerosol and dust event records indicates a high level of model competency. (c) 2006 Elsevier B.V. All rights reserved.