38 resultados para Electromyography.
Resumo:
Study Design. Cross-sectional study of electromyographic onsets of trunk and hip muscles in subjects with a clinical diagnosis of sacroiliac joint pain and matched control subjects. Objectives. To determine whether muscle activation of the supporting leg was different between control subjects and subjects with sacroiliac joint pain during hip flexion in standing. Background. Activation of the trunk and gluteal muscles stabilize the pelvis for load transference; however, the temporal pattern of muscle activation and the effect of pelvic pain on temporal parameters has not been investigated. Methods. Fourteen men with a clinical diagnosis of sacroiliac joint pain and healthy age-matched control subjects were studied. Surface electromyographic activity was recorded from seven trunk and hip muscles of the supporting leg during hip flexion in standing. Onset of muscle activity relative to initiation of the task was compared between groups and between limbs. Results. The onset of obliquus internus abdominis (OI) and multifidus occurred before initiation of weight transfer in the control subjects. the onset of obliquus internus abdominis, multifidus, and gluteus maximus was delayed on the symptomatic side in subjects with sacroiliac joint pain compared with control subjects, and the onset of biceps femoris electromyographic activity was earlier. IN addition, electromyographic onsets were different between the symptomatic and asymptomatic sides in subjects with sacroiliac joint pain. Conclusions. The delayed onset of obliquus internus abdominis, multifidus, and gluteus maximus electromyographic activity of the supporting leg during hip flexion, in subjects with sacroiliac joint pain. suggests an alteration in the strategy for lumbopelvic stabilization that may disrupt load transference through the pelvis.
Resumo:
Study Design. Cross-sectional study. Objective. This study compared neck muscle activation patterns during and after a repetitive upper limb task between patients with idiopathic neck pain, whiplash-associated disorders, and controls. Summary of Background Data. Previous studies have identified altered motor control of the upper trapezius during functional tasks in patients with neck pain. Whether the cervical flexor muscles demonstrate altered motor control during functional activities is unknown. Methods. Electromyographic activity was recorded from the sternocleidomastoid, anterior scalenes, and upper trapezius muscles. Root mean square electromyographic amplitude was calculated during and on completion of a functional task. Results. A general trend was evident to suggest greatest electromyograph amplitude in the sternocleidomastoid, anterior scalenes, and left upper trapezius muscles for the whiplash-associated disorders group, followed by the idiopathic group, with lowest electromyographic amplitude recorded for the control group. A reverse effect was apparent for the right upper trapezius muscle. The level of perceived disability ( Neck Disability Index score) had a significant effect on the electromyographic amplitude recorded between neck pain patients. Conclusions. Patients with neck pain demonstrated greater activation of accessory neck muscles during a repetitive upper limb task compared to asymptomatic controls. Greater activation of the cervical muscles in patients with neck pain may represent an altered pattern of motor control to compensate for reduced activation of painful muscles. Greater perceived disability among patients with neck pain accounted for the greater electromyographic amplitude of the superficial cervical muscles during performance of the functional task.
Resumo:
Exercise interventions are deemed essential for the effective management of patients with neck pain. However, there has been a lack of consensus on optimal exercise prescription, which has resulted from a paucity of studies to quantify the precise nature of muscle impairment, in people with neck pain. This masterclass will present recent research from our laboratory, which has utilized surface electromyography to investigate cervical flexor muscle impairment in patients with chronic neck pain. This research has identified deficits in the motor control of the deep and superficial cervical flexor muscles in people with chronic neck pain, characterized by a delay in onset of neck muscle contraction associated with movement of the upper limb. In addition, people with neck pain demonstrate an altered pattern of muscle activation, which is characterized by reduced deep cervical flexor muscle activity during a low load cognitive task and increased activity of the superficial cervical flexor muscles during both cognitive tasks and functional activities. The results have demonstrated the complex, multifaceted nature of cervical muscle impairment, which exists in people with a history of neck pain. In turn, this has considerable implications for the rehabilitation of muscle function in people with neck pain disorders. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The purpose of this study was to examine the spatio-temporal activation of the sternocleidomastoid (SCM) and cervical extensor (CE) muscles with respect to the deltoid muscle onset during rapid voluntary upper limb movement in healthy volunteers. The repeatability and reliability of the spatio-temporal aspects of the myoelectric signals were also examined. Ten subjects performed bilateral and unilateral rapid upper limb flexion, abduction and extension in response to a visual stimulus. EMG onsets and normalised root mean square (nRMS) values were calculated for the SCM and CE muscles. Subjects attended three testing sessions over non-consecutive days allowing the repeatability and reliability of these measures to be assessed. The SCM and CE muscles demonstrated feed-forward activation (activation within 50 ms of deltoid onset) during rapid arm movements in all directions. The sequence and magnitude of neck muscle activation displayed directional specificity, however, the neck flexor and extensor muscles displayed co-activation during all perturbations. EMG onsets demonstrated high repeatability in terms of repeated measure precision (nSEM in the range 1.9-5.7%). This was less evident for the repeatability of nRMS values. The results of this study provide a greater understanding of cervical neuromotor control strategies. During bilateral and unilateral upper limb perturbations, the SCM and CE muscles demonstrate feed-forward co-activation. It seems apparent that feed-forward activation of neck muscles is a mechanism necessary to achieve stability for the visual and vestibular systems, whilst ensuring stabilisation and protection of the cervical spine. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Purpose: This study compared the neuromuscular efficiency (NME) of the sternocleidomastoid (SCM) and anterior scalene (AS) muscles between 20 chronic neck pain patients and 20 asymptomatic controls. Method: Myoelectric signals were recorded from the sternal head of SCM and the AS muscles as subjects performed sub-maximal isometric cervical flexion contractions at 25 and 50% of the maximum voluntary contraction (MVC). The NME was calculated as the ratio between MVC and the corresponding average rectified value of the EMG signal. Ultrasonography was used to measure subcutaneous tissue thickness over the SCM and AS to ensure that differences did not exist between groups. Results: For both the SCM and AS muscles, NME was shown to be significantly reduced in patients with neck pain at 25% MVC (p < 0.05). Subcutaneous tissue thickness over the SCM and AS muscles was not different between groups. Conclusions: Reduced NME in the superficial cervical flexor muscles in patients with neck pain may be a measurable altered muscle strategy for dysfunction in other muscles. This aberrant pattern of muscle activation appears to be most evident under conditions of low load. NME, when measured at 25% MVC, may be a useful objective measure for future investigation of muscle dysfunction in patients with neck pain.
Resumo:
The objective of this study was to compare onset of deep and superficial cervical flexor muscle activity during rapid, unilateral arm movements between ten patients with chronic neck pain and 12 control subjects. Deep cervical flexor (DCF) electromyographic activity (EMG) was recorded with custom electrodes inserted via the nose and fixed by suction to the posterior mucosa of the oropharynx. Surface electrodes were placed over the sternocleidomastoid (SCM) and anterior scalene (AS) muscles. While standing, subjects flexed and extended the right arm in response to a visual stimulus. For the control group, activation of DCF, SCM and AS muscles occurred less than 50 ms after the onset of deltoid activity, which is consistent with feedforward control of the neck during arm flexion and extension. When subjects with a history of neck pain flexed the arm, the onsets of DCF and contralateral SCM and AS muscles were significantly delayed (p<0.05). It is concluded that the delay in neck muscle activity associated with movement of the arm in patients with neck pain indicates a significant deficit in the automatic feedforward control of the cervical spine. As the deep cervical muscles are fundamentally important for support of the cervical lordosis and the cervical joints, change in the feedforward response may leave the cervical spine vulnerable to reactive forces from arm movement.
Resumo:
There has been little investigation into whether or not differences exist in the nature of physical impairment associated with neck pain of whiplash and insidious origin. This study examined the neck flexor synergy during performance of the cranio-cervical flexion test, a test targeting the action of the deep neck flexors. Seventy-five volunteer subjects participated in this study and were equally divided between Group 1, asymptomatic control subjects, Group 2, subjects with insidious onset neck pain and Group 3, subjects with neck pain following a whiplash injury. The cranio-cervical flexion test was performed in five progressive stages of increasing cranio-cervical flexion range. Subjects' performance was guided by feedback from a pressure sensor inserted behind the neck which monitored the slight flattening of the cervical lordosis which occurs with the contraction of longus colli. Myoelectric signals (EMG) were detected from the muscles during performance of the test. The results indicated that both the insidious onset neck pain and whiplash groups had higher measures of EMG signal amplitude (normalized root mean square) in the sternocleidomastoid during each stage of the test compared to the control subjects (all P
Resumo:
Despite the evidence of greater fatigability of the cervical flexor muscles in neck pain patients, the effect of unilaterality of neck pain on muscle fatigue has not been investigated. This study compared myoelectric manifestations of sternocleidomastoid (SCM) and anterior scalene (AS) muscle fatigue between the painful and non-painful sides in patients with chronic unilateral neck pain. Myoelectric signals were recorded from the sternal head of SCM and the AS muscles bilaterally during sub-maximal isometric cervical flexion contractions at 25% and 50% of the maximum voluntary contraction (MVC). The time course of the mean power frequency, average rectified value and conduction velocity of the electromyographic signals were calculated to quantify myoelectric manifestations of muscle fatigue. Results revealed greater estimates of the initial value and slope of the mean frequency for both the SCM and AS muscles on the side of the patient's neck pain at 25% and 50% of MVC. These results indicate greater myoelectric manifestations of muscle fatigue of the superficial cervical flexor muscles ipsilateral to the side of pain. This suggests a specificity of the effect of pain on muscle function and hence the need for specificity of therapeutic exercise in the management of neck pain patients. (C) 2003 European Federation of Chapters of the International Association for the Study of Pain. Published by Elsevier Ltd. All rights reserved.
Resumo:
Study Design. Cross-sectional study. Objective. The present study compared activity of deep and superficial cervical flexor muscles and craniocervical flexion range of motion during a test of craniocervical flexion between 10 patients with chronic neck pain and 10 controls. Summary of Background Data. Individuals with chronic neck pain exhibit reduced performance on a test of craniocervical flexion, and training of this maneuver is effective in management of neck complaints. Although this test is hypothesized to reflect dysfunction of the deep cervical flexor muscles, this has not been tested. Methods. Deep cervical flexor electromyographic activity was recorded with custom electrodes inserted via the nose and fixed by suction to the posterior mucosa of the oropharynx. Surface electrodes were placed over the superficial neck muscles ( sternocleidomastoid and anterior scalene). Root mean square electromyographic amplitude and craniocervical flexion range of motion was measured during five incremental levels of craniocervical flexion in supine. Results. There was a strong linear relation between the electromyographic amplitude of the deep cervical flexor muscles and the incremental stages of the craniocervical flexion test for control and individuals with neck pain ( P = 0.002). However, the amplitude of deep cervical flexor electromyographic activity was less for the group with neck pain than controls, and this difference was significant for the higher increments of the task ( P < 0.05). Although not significant, there was a strong trend for greater sternocleidomastoid and anterior scalene electromyographic activity for the group with neck pain. Conclusions. These data confirm that reduced performance of the craniocervical flexion test is associated with dysfunction of the deep cervical flexor muscles and support the validity of this test for patients with neck pain.
Resumo:
Despite the importance of the deep intrinsic spinal muscles for trunk control, few studies have investigated their activity during human locomotion or how this may change with speed and mode of locomotion. Furthermore, it has not been determined whether the postural and respiratory functions, of which these muscles take part, can be coordinated when locomotor demands are increased. EMG recordings of abdominal and paraspinal muscles were made in seven healthy subjects using fine-wire and surface electrodes. Measurements were also made of respiration and gait parameters. Recordings were made for 10s as subjects walked on a treadmill at 1 and 2 ms(-1) and ran at 2, 3, 4 and 5 ms(-1). Unlike the superficial muscles, transversus abdominis was active tonically throughout the gait cycle with all tasks, except running at speeds of 3 ms(-1) and greater. All other muscles were recruited in a phasic manner. The relative duration of these bursts of activity was influenced by speed and/or mode of locomotion. Activity of all abdominal muscles, except rectus abdominis (RA), was modulated both for respiration and locomotor-related functions but this activity was affected by the speed and mode of locomotion. This study provides evidence that the deep abdominal muscles are controlled independently of the other trunk muscles. Furthermore, the pattern of recruitment of the trunk muscles and their respiratory and postural coordination is dependent on the speed and mode of locomotion. (C) 2003 Published by Elsevier B.V.
Resumo:
Long-standing groin pain is a persistent problem that is commonly difficult to rehabilitate. Theoretical rationale indicates a relationship between the motor control of the pelvis and long-standing groin pain; however, this link has not been investigated. Purpose: The current experiment aimed to evaluate motor control of the abdominal muscles in a group of Australian football players with and without long-standing groin pain. Methods: Ten participants with long-standing groin pain and 12 asymptomatic controls were recruited for the study. Participants were elite or subelite Australian football players. Fine-wire and surface electromyography electrodes were used to record the activity of the selected abdominal and leg muscles during a visual choice reaction-time task (active straight leg raising). Results: When the asymptomatic controls completed the active straight leg raise (ASLR) task, the transversus abdominus contracted in a feed-forward manner. However, when individuals with long-standing groin pain completed the ASLR task, the onset of transversus abdominus was delayed (P < 0.05) compared with the control group. There were no differences between groups for the onset of activity of internal oblique, external oblique, and rectus abdominus (all P > 0.05). Conclusions: The finding that the onset of transversus abdominus is delayed in individuals with long-standing groin pain is important, as it demonstrates an association between long-standing groin pain and transversus abdominus activation.
Resumo:
Forearm support during keyboard use has been reported to reduce neck and shoulder muscle activity and discomfort. However, the effect of forearm support on wrist posture has not been examined. The aim of this study was to examine the effect of 3 different postures during keyboard use: forearm support, wrist support and floating. The floating posture (no support) was used as the reference condition. A wrist rest was present in all test conditions. Thirteen participants completed 20 min wordprocessing tasks in each of the test conditions. Electromyography was used to monitor neck, shoulder and forearm muscle activity. Bilateral and overhead video cameras recorded left and right wrist extension, shoulder and elbow flexion and radial and ulnar deviation. The forearm support condition resulted in significantly less ulnar deviation (