20 resultados para Drug effect
Resumo:
Objective: To examine the impact of a sudden and dramatic decrease in heroin availability, concomitant with increases in price and decreases in purity, on fatal and non-fatal drug overdoses in New South Wales, Australia. Design and setting: Time-series analysis was conducted where possible on data on overdoses collected from NSW hospital emergency departments, the NSW Ambulance Service, and all suspected drug-related deaths referred to the NSW Coroner's court. Main outcome measures: The number of suspected drug-related deaths where heroin and other drugs were mentioned; ambulance calls to suspected opioid overdoses; and emergency department admissions for overdoses on heroin and other drugs. Results: Both fatal and non-fatal heroin overdoses decreased significantly after heroin supply reduced; the reductions were greater among younger age groups than older age groups. There were no clear increases in non-fatal overdoses with cocaine, methamphetamines or benzodiazepines recorded at hospital emergency departments after the reduction in heroin supply. Data on drug-related deaths suggested that heroin use was the predominant driver of drug-related deaths in NSW, and that when heroin supply was reduced overdose deaths were more likely to involve a wider combination of drugs. Conclusion: A reduction in heroin supply reduced heroin-related deaths, and did not result in a concomitant increase, to the same degree, in deaths relating to other drugs. Younger people were more affected by the reduction in supply.
Resumo:
We studied an in vitro model of continuous venovenous haemofiltration to determine levofloxacin adsorption by polyacrylonitrile (PAN) filters. Four doses of levofloxacin (5, 25, 50 and 100 mg) were used, resulting in circulating concentrations of levofloxacin at 120 min of 3.56 +/- 0.14, 15.84 +/- 2.08, 31.42 +/- 1.95 and 58.23 +/- 1.10 mg/L, respectively. Adsorption at 2 h was 0.65 +/- 0.17, 5.99 +/- 2.49, 12.30 +/- 2.34 and 30.13 +/- 1.32 mg, respectively (P < 0.001). From 2 h to 4 h, increasing the blood pump rate and the ultrafiltration rate had no effect on adsorption. When the concentration was decreased from 3.55 +/- 0.13 mg/L at 4 h to 2.16 +/- 0.11 mg/L at 5 h by addition of lactated Ringer's solution, adsorption decreased from 0.67 +/- 0.16 mg to 0.21 +/- 0.25 mg (P < 0.05). These data show that adsorption of levofloxacin by PAN haemofilters is concentration dependent and reversible in vitro and suggest that adsorption by haemofilters is unlikely to affect levofloxacin pharmacokinetics significantly in vivo. (c) 2006 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
Resumo:
The purpose of this study was to evaluate the effect of cyclosporine (CyA)-cyclodextrin (CD) complex incorporated within PLGA inicrospheres on microsphere characteristics, with particular emphasis on drug release kinetics. For this purpose, microspheres encapsulated with CyA and those loaded by CyA-CD complex were prepared by solvent evaporation and multiple emulsification solvent evaporation methods, respectively. Morphology, size, encapsulation efficiency and drug release pattern from microspheres were evaluated. Also, physicochemical properties of drug inside microspheres were characterized by differential scanning calorimetry (DSC) and infrared spectroscopy (IR) studies. Scanning electron microscopy (SEM) studies showed that microspheres encapsulated with CyA had islands on the microsphere surface but the islands were not seen on the surface of microspheres loaded by complex. Size range varied from 1 to 25 mu m for CyA encapsulated microspheres and 1 to 50 mu m for complex loaded microspheres. The release of CyA was biphasic with an initial more rapid release phase followed by a slower phase but drug release was twice as fast for complex loaded microspheres. IR studies did not indicate any chemical interaction between the components of microspheres and DSC thermograms revealed that CyA was present either in its amorphous state in microspheres or the presence of CyA as an inclusion complex within microspheres loaded by complex. In conclusion, using CyA as an inclusion complex with CD within microspheres can affect microsphere characteristics and drug release and it is possible to modify microsphere properties like drug release by incorporating CDs as complexing agents.
Resumo:
Aim: To identify the demographics and risk factors in a selected patient population prescribed non-selective and cyclo-oxygenase-2 (COX- 2) selective non-steroidal anti-inflammatory drugs (NSAIDs). Method: A structured clinical self-audit form was distributed in January to March 2001 to 155 interested general practitioners (GPs) in rural Queensland. Results: Seventy one GPs participated in the audit and contributed 1417 patient records - 790 patients had received nonselective NSAIDs and 627 had received COX-2 inhibitors (celecoxib or rofecoxib). Patients who received COX-2 inhibitors were significantly older, more likely to have clinically important concomitant illness, and more likely to be taking medication known to interact with NSAIDs. They were also twice as likely to have two or more risk factors for adverse effects. The most common reasons for switching from an NSAID to a COX-2 inhibitor were reported to be a previous side effect from an NSAID (primarily related to gastrointestinal effects) or the doctor's perception of the superior efficacy of COX-2 inhibitor therapy. Conclusions: This study has shown that COX-2 inhibitors were used in a distinctly different patient population compared to non-selective NSAIDs. There were significant variations in the demographics and number of risk factors - for example, cardiovascular and renal - between the two identified populations. These differences may be due to doctors selecting COX-2 inhibitors for patients at high risk of gastrointestinal complications. However, the prescribing pattern may also be partly due to misconceptions about the relative safety and efficacy of COX-2 inhibitor drugs.
Resumo:
BACKGROUND: The development of hyperlipidemia after liver transplant is frequently treated with hydroxymethylglutaryl coenzyme A reductase inhibitors (statins) such as atorvastatin. As atorvastatin and the primary immunosuppressant drug, cyclosporine, are metabolized by the same pathway, there is the potential for an interaction. OBJECTIVE: To determine the effect of atorvastatin on cyclosporine pharmacokinetics in liver transplant recipients. METHODS: Six stable, long-term adult liver transplant recipients from a single center who developed posttransplant dyslipidemia were recruited to participate in a 14-day, open-label study of atorvastatin 10 mg/d coadministered with standard posttransplant immunosuppression using constant oral doses-of cyclosporine and corticosteroids. A 10-point pharmacokinetic profile was performed prior to and on day 14 after commencement of atorvastatin therapy. Cyclosporine concentrations were measured by HPLC-electrospray-tandem mass spectrometry. The AUC was calculated by the linear trapezoidal rule, with other parameters determined by visual inspection. RESULTS: Atorvastatin coadministration increased the cyclosporine AUC by 9% (range 0-20.6%; 3018 vs 3290 ng(.)h/mL; p = 0.04). No significant change was evident for other cyclosporine pharmacokinetic parameters. Total cholesterol and low-density lipoprotein cholesterol levels were significantly lower on day 14 than at baseline (p < 0.02). One patient developed a twofold increase in transaminases after 2 weeks of atorvastatin therapy, but no other clinical or biochemical adverse events were recorded. CONCLUSIONS: Atorvastatin coadministration increases the cyclosporine AUC by approximately 10% in stable liver transplant recipients. This change in systemic exposure to cyclosporine is of questionable clinical significance. Atorvastatin is effective in reducing cholesterol levels in liver transplant recipients.
Resumo:
This study investigated the relative contribution of ion-trapping, microsomal binding, and distribution of unbound drug as determinants in the hepatic retention of basic drugs in the isolated perfused rat liver. The ionophore monensin was used to abolish the vesicular proton gradient and thus allow an estimation of ion-trapping by acidic hepatic vesicles of cationic drugs. In vitro microsomal studies were used to independently estimate microsomal binding and metabolism. Hepatic vesicular ion-trapping, intrinsic elimination clearance, permeability-surface area product, and intracellular binding were derived using a physiologically based pharmacokinetic model. Modeling showed that the ion-trapping was significantly lower after monensin treatment for atenolol and propranolol, but not for antipyrine. However, no changes induced by monensin treatment were observed in intrinsic clearance, permeability, or binding for the three model drugs. Monensin did not affect binding or metabolic activity in vitro for the drugs. The observed ion-trapping was similar to theoretical values estimated using the pHs and fractional volumes of the acidic vesicles and the pK(a) values of drugs. Lipophilicity and pK(a) determined hepatic drug retention: a drug with low pK(a) and low lipophilicity (e.g., antipyrine) distributes as unbound drug, a drug with high pK(a) and low lipophilicity (e.g., atenolol) by ion-trapping, and a drug with a high pK(a) and high lipophilicity (e.g., propranolol) is retained by ion-trapping and intracellular binding. In conclusion, monensin inhibits the ion-trapping of high pK(a) basic drugs, leading to a reduction in hepatic retention but with no effect on hepatic drug extraction.
Resumo:
The effect of region of application on the percutaneous penetration of solutes with differing lipophilicity was investigated in canine skin. Skin from the thorax, neck, back, groin, and axilla regions was harvested from Greyhound dogs and placed in Franz-type diffusion cells. Radiolabelled (C-14) ethanol (Log P 0.19) or hexanol (Log P 1.94) was applied to each skin section for a total of 5 h. The permeability coefficient (k(P), cm h(-1)) and residue of alcohol remaining in the skin were significantly (P = 0.001) higher for hexanol compared to ethanol. In contrast, ethanol had a far greater maximum flux (J(max), mol (cm(2))(-1) h(-1)) than hexanol (P = 0.001). A comparison of regional differences shows the k(P) and Jmax for ethanol in the groin was significantly lower (P = 0.035) than the back. The k(P) and Jmax for hexanol were significantly higher (P = 0.001) in the axilla than the other four skin sites. An understanding of factors influencing percutaneous drug movement is important when formulating topical preparations for the dog. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
n early 2001 there was a dramatic decline in the availability of heroin in New South Wales (NSW), Australia, where previously heroin had been readily available at a low price and high purity.1 The decline was confirmed by Australia's strategic early warning system, which revealed a reduction in heroin supply across Australia and a considerable increase in price,2 particularly from January to April 2001. This "heroin shortage" provided a natural experiment in which to examine the effect of substantial changes in price and availability on injecting drug use and its associated harms in Australia's largest heroin market,2 a setting in which harm reduction strategies were widely used. Publicly funded needle and syringe programmes were introduced to Australia in 1987, and methadone maintenance programmes, which were established in the 1970s, were significantly expanded in 1985 and again in 1999.
Resumo:
A model drug release study on the ingress of water and Kokubo simulated body fluid (SBF) into poly(2-hydroxyethyl methacrylate) (THFMA) and its copolymers with tetrahydrofurfuryl methacrylate (THFMA) loaded with vitamin B-12 was undertaken over the temperature range 298-318 K. The polymers were studied as cylinders and were loaded with either 5 or 10 wt-% of the drug. The drug release from the polymers was found to follow a Fickian diffusion mechanism in the early stages of the drug release, with higher normalized release rates at higher temperatures and higher drug loadings. The normalized release rates were also found to be higher for the SBF solution than for water. The copolymer composition was found to have a significant effect on the rate of release of the drug, with the rate falling rapidly between HEMA mole fractions of 1.0 and 0.8, but for lower mole fractions of HEMA the normalized release rate decreased more slowly. This behaviour followed the trend found for the changes in the equilibrium penetrant contents for the copolymers.
Resumo:
Objective-To investigate penetration of a topically applied nonsteroidal anti-inflammatory drug (NSAID) into tissues and synovial fluid. Animals-5 Greyhounds. Procedure-Dogs were anesthetized and microdialysis probes placed in the dermis and gluteal muscle over each coxofemoral (hip) joint. Methylsalicylate (MeSA) was applied topically over the left hip joint. Dialysate and plasma (blood samples from the cephalic and femoral veins) were obtained during the subsequent 5 hours. Dogs were euthanatized, and tissue samples and synovial fluid were collected and analyzed for salicylic acid (SA) and MeSA by use of high-pressure liquid chromatography. Results-SA and MeSA concentrations increased rapidly (< 30 minutes after application) in dialysate obtained from treated dermis. Salicylic acid also appeared in plasma within 30 minutes and reached a plateau concentration after 2 hours, although combined drug concentrations (SA plus MeSA) in plasma obtained from femoral vein samples were twice those measured in plasma obtained from the cephalic vein (SA only). Treated muscle had a progressive decrease in NSAID concentration with increasing depth (SA and MeSA), but it was significantly higher than the concentration in untreated muscle. Substantial amounts of SA and MeSA were also measured in synovial fluid of treated joints. Conclusions and Clinical Relevance-Topically applied NSAIDs can penetrate deeply into tissues and synovial fluid. Local concentrations higher than circulating systemic concentrations are suggestive that direct diffusion and local blood redistribution are contributing to this effect. Systemic blood concentrations may be inadequate to describe regional kinetics of topically applied drugs.
Resumo:
Objective: To assess from a health sector perspective the incremental cost-effectiveness of eight drug treatment scenarios for established schizophrenia. Method: Using a standardized methodology, costs and outcomes are modelled over the lifetime of prevalent cases of schizophrenia in Australia in 2000. A two-stage approach to assessment of health benefit is used. The first stage involves a quantitative analysis based on disability-adjusted life years (DALYs) averted, using best available evidence. The robustness of results is tested using probabilistic uncertainty analysis. The second stage involves application of 'second filter' criteria (equity, strength of evidence, feasibility and acceptability) to allow broader concepts of benefit to be considered. Results: Replacing oral typicals with risperidone or olanzapine has an incremental cost-effectiveness ratio (ICER) of A$48 000 and A$92 000/DALY respectively. Switching from low-dose typicals to risperidone has an ICER of A$80 000. Giving risperidone to people experiencing side-effects on typicals is more cost-effective at A$20 000. Giving clozapine to people taking typicals, with the worst course of the disorder and either little or clear deterioration, is cost-effective at A$42 000 or A$23 000/DALY respectively. The least cost-effective intervention is to replace risperidone with olanzapine at A$160 000/DALY. Conclusions: Based on an A$50 000/DALY threshold, low-dose typical neuroleptics are indicated as the treatment of choice for established schizophrenia, with risperidone being reserved for those experiencing moderate to severe side-effects on typicals. The more expensive olanzapine should only be prescribed when risperidone is not clinically indicated. The high cost of risperidone and olanzapine relative to modest health gains underlie this conclusion. Earlier introduction of clozapine however, would be cost-effective. This work is limited by weaknesses in trials (lack of long-term efficacy data, quality of life and consumer satisfaction evidence) and the translation of effect size into a DALY change. Some stakeholders, including SANE Australia, argue the modest health gains reported in the literature do not adequately reflect perceptions by patients, clinicians and carers, of improved quality of life with these atypicals.
Resumo:
To characterize potential mechanism-based inactivation (MBI) of major human drug-metabolizing cytochromes P450 (CYP) by monoamine oxidase (MAO) inhibitors, including the antitubercular drug isoniazid. Human liver microsomal CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A activities were investigated following co- and preincubation with MAO inhibitors. Inactivation kinetic constants (K-I and k(inact)) were determined where a significant preincubation effect was observed. Spectral studies were conducted to elucidate the mechanisms of inactivation. Hydrazine MAO inhibitors generally exhibited greater inhibition of CYP following preincubation, whereas this was less frequent for the propargylamines, and tranylcypromine and moclobemide. Phenelzine and isoniazid inactivated all CYP but were most potent toward CYP3A and CYP2C19. Respective inactivation kinetic constants (K-I and k(inact)) for isoniazid were 48.6 mu M and 0.042 min(-1) and 79.3 mu M and 0.039 min(-1). Clorgyline was a selective inactivator of CYP1A2 (6.8 mu M and 0.15 min(-1)). Inactivation of CYP was irreversible, consistent with metabolite-intermediate complexation for isoniazid and clorgyline, and haeme destruction for phenelzine. With the exception of phenelzine-mediated CYP3A inactivation, glutathione and superoxide dismutase failed to protect CYP from inactivation by isoniazid and phenelzine. Glutathione partially slowed (17%) the inactivation of CYP1A2 by clorgyline. Alternate substrates or inhibitors generally protected against CYP inactivation. These data are consistent with mechanism-based inactivation of human drug-metabolizing CYP enzymes and suggest that impaired metabolic clearance may contribute to clinical drug-drug interactions with some MAO inhibitors.
Resumo:
Most people presenting with rheumatoid arthritis today can expect to achieve disease suppression, can avoid or substantially delay joint damage and deformities, and can maintain a good quality of life. Optimal management requires early diagnosis and treatment, usually with combinations of conventional disease modifying antirheumatic drugs (DMARDs). If these do not effect remission, biological DMARDs may be beneficial. Lack of recognition of the early signs of rheumatoid arthritis, ignorance of the benefits of early application of modern treatment regimens, and avoidable delays in securing specialist appointments may hinder achievement of best outcomes for many patients. Triage for recognising possible early rheumatoid arthritis must begin in primary care settings with the following pattern of presentation as a guide: involvement of three or more joints; early-morning joint stiffness of greater than 30 minutes; or bilateral squeeze tenderness at metacarpophalangeal or metatarsophalangeal joints.