44 resultados para Cromatografía del gas
Resumo:
The Bandas del Sur Formation preserves a Quaternary extra-caldera record of central phonolitic explosive volcanism of the Las Canadas volcano at Tenerife. Volcanic rocks are bimodal in composition, being predominantly phonolitic pyroclastic deposits, several eruptions of which resulted in summit caldera collapse, alkali basaltic lavas erupted from many fissures around the flanks. For the pyroclastic deposits, there is a broad range of pumice glass compositions from phonotephrite to phonolite. The phonolite pyroclastic deposits are also characterized by a diverse, 7-8-phase phenocryst assemblage (alkali feldspar + biotite + sodian diopside + titanomagnetite + ilmenite + nosean-hauyne + titanite + apatite) with alkali feldspar dominant, in contrast to interbedded phonolite lavas that typically have lower phenocryst contents and lack hydrous phases. Petrological and geochemical data are consistent with fractional crystallization (involving the observed phenocryst assemblages) as the dominant process in the development of phonolite magmas. New stratigraphically constrained data indicate that petrological and geochemical differences exist between pyroclastic deposits of the last two explosive cycles of phonolitic volcanism. Cycle 2 (0.85-0.57 Ma) pyroclastic fall deposits commonly show a cryptic compositional zonation indicating that several eruptions tapped chemically, and probably thermally stratified magma systems. Evidence for magma mixing is most widespread in the pyroclastic deposits of Cycle 3 (0.37-0.17 Ma), which includes the presence of reversely and normally zoned phenocrysts, quenched mafic glass blebs in pumice, banded pumice, and bimodal to polymodal phenocryst compositional populations. Syn-eruptive mixing events involved mostly phonolite and tephriphonolite magmas, whereas a pre-eruptive mixing event involving basaltic magma is recorded in several banded pumice-bearing ignimbrites of Cycle 3. The periodic addition and mixing of basaltic magma ultimately may have triggered several eruptions. Recharge and underplating by basaltic magma is interpreted to have elevated sulphur contents (occurring as an exsolved gas phase) in the capping phonolitic magma reservoir. This promoted nosean-hauyne crystallization over nepheline, elevated SO3 contents in apatite, and possibly resulted in large, climatologically important SO2 emissions.
Resumo:
Hydrogen is being seen as an alternative energy carrier to conventional hydrocarbons to reduce greenhouse gas emissions. High efficiency separation technologies to remove hydrogen from the greenhouse gas, carbon dioxide, are therefore in growing demand. Traditional thermodynamic separation systems utilise distillation, absorption and adsorption, but are limited in efficiency at compact scales. Molecular sieve silica (MSS) membranes can perform this separation as they have high permselectivity of hydrogen to carbon dioxide, but their stability under thermal cycling is not well reported. In this work we exposed a standard MSS membrane and a carbonised template MSS (CTMSS) membrane to thermal cycling from 100 to 450°C. The standard MSS and carbonised template CTMSS membranes both showed permselectivity of helium to nitrogen dropping from around 10 to 6 in the first set of cycles, remaining stable until the last test. The permselectivity drop was due to small micropore collapse, which occurred via structure movement during cycling. Simulating single stage membrane separation with a 50:50 molar feed of H2:CO2, H2 exiting the permeate stream would start at 79% and stabilise at 67%. Higher selectivity membranes showed less of a purity drop, indicating the margin at which to design a stable membrane separation unit for CO2 capture.
Resumo:
Weakly branched silica films formed by the two-step sol-gel process allow for the formation of high selectivity membranes for gas separation. 29Si NMR and gas permeation showed that reduced crosslinking leads to He/CH4 selectivity improvement from 300 to 1000. Applied in membrane reactor for cyclohexane conversion to benzene, conversions were achieved at 14 fold higher than a conventional reactor at 250°C. Hydrothermal stability studies showed that carbon templating of silica is required for hydrothermally stable membranes. From our work it was shown that with correct application of chemistry, practical membrane systems can be built to suit gas separation (e. g. hydrogen fuel) and reactor systems.
Resumo:
In this work we compare the hydrothermal stability performance of a Templated Molecular Sieve Silica (TMSS) membrane against a standard, non-templated Molecular Sieve Silica (MSS) membrane. The tests were carried under dry and wet (steam) conditions for single gas (He, H2, CO and CO2) at 1-2 atm membrane pressure drop at 200oC. Single gas TMSS membrane H2, permeance and H2/CO permselectivity was found to be 2.05 x 10-8 mols.m-2.s-1.Pa-1 and 15, respectively. The MSS membrane showed similar selectivity, but increased overall flux. He permeance through membranes decayed at a rate of 4-5 x 10-10 mols.m-2.s-1.Pa-1 per day regardless of membrane ambience (dry or wet). Although H2/CO permselectivity of the TMSS membrane slightly improved from 15 to 18 after steam testing, the MSS membrane resulted in significant reduction from 16 to 8.3. In addition, membrane regeneration after more than 50 days resulted in the TMSS membrane reverting to its original permeation levels while no significant improvements were observed for the MSS membra ne. Results showed that the TMSS membrane had enhanced hydrothermal stability and regeneration ability.
Resumo:
A new class of hybrid molecular sieve silica (MSS) membranes is developed and tested against standard and organic templated membranes. The hybrid membrane is synthesized by the standard sol-gel process, integrating a template (methyltriethoxysilane - MTES) and a C6 surfactant (triethylhexylammonium bromide) into the silica film matrix. After hydro treatment under a relative humidity of 96% for 50h, the hybrid membrane shows no changes in its gas separation capabilities or energy of mobility. The structural characteristics and integrity of the hybrid membrane are retained due to a high concentration of organophilic functional groups and alkoxides observed using 29 Si NMR. In contrast, the structural integrity of the membranes prepared with non-templated films deteriorated during the hydro treatment due to a large percentage of silanol groups (Si-OH) which react with water. The hybrid membranes underwent a decrease in the H2/CO2 selectivity of only 1% whereas for the non-templated membrane a 21% decrease was observed. The transport mechanism of the hybrid membranes is activated as permeation increased with temperature. The activation energy for the permeation of H2 is positive while negative for CO2. The H2 permeation obtained was 3x 10 -8 mol.m -2 .s -1 .Pa -1 and permselectivities for H2/CO2 and H2/N2 varied between 1-7 and 31-34, respectively.
Resumo:
A technique to simulate the grand canonical ensembles of interacting Bose gases is presented. Results are generated for many temperatures by averaging over energy-weighted stochastic paths, each corresponding to a solution of coupled Gross-Pitaevskii equations with phase noise. The stochastic gauge method used relies on an off-diagonal coherent-state expansion, thus taking into account all quantum correlations. As an example, the second-order spatial correlation function and momentum distribution for an interacting 1D Bose gas are calculated.
Resumo:
We calculate the two-particle local correlation for an interacting 1D Bose gas at finite temperature and classify various physical regimes. We present the exact numerical solution by using the Yang-Yang equations and Hellmann-Feynman theorem and develop analytical approaches. Our results draw prospects for identifying the regimes of coherent output of an atom laser, and of finite-temperature “fermionization” through the measurement of the rates of two-body inelastic processes, such as photoassociation.
Resumo:
Multiple gas solid reactions involving one solid and N gaseous reactants are investigated in this study by using a matched asymptotic expansion technique. Two cases are particularly studied. In the first case all N chemical reaction rates are faster than the diffusion rate. While in the second case only M (M < N) chemical reaction rates are faster than the diffusion rate and the rates of the remaining (N-M) chemical reactions are comparable to that of diffusion. For these two cases the solid concentration profile behaves like a travelling wave. In the first case the wave front velocity is contributed linearly by all gaseous reactants (additive law) while in the second case this law does not hold.
Resumo:
By using a matched asymptotic expansion technique, the shrinking core model (SCM) used in non-catalytic gas solid reactions with general kinetic expression is rigorously justified in this paper as a special case of the homogeneous model when the reaction rate is much faster than that of diffusion. The time-pendent velocity of the moving reacted-unreacted interface is found to be proportional to the gas flux at that interface for all geometries of solid particles, and the thickness order of the reaction zone and also the degree of chemical reaction at the interface is discussed in this paper.
Resumo:
We have used the DSMC method to determine contamination (impingement of atmospheric molecules) and the aerodynamic forces on a cold satellite when a protective “purge gas” is ejected from a sting protruding ahead of the satellite. Forward ejection of the purge gas provides the greatest protection for a given mass of purge gas and the aerodynamic drag can be significantly reduced, thus compensating for the backward reaction from the forward ejection. If the purge gas is ejected backward from the sting (towards the satellite) the ejection provides thrust and the net retarding force can be reduced to zero. Contamination can be reduced and the mass of purging gas is less than the mass of conventional rocket propellant required to maintain the orbit of an unprotected satellite.
Resumo:
This is the first in a series of three articles which aimed to derive the matrix elements of the U(2n) generators in a multishell spin-orbit basis. This is a basis appropriate to many-electron systems which have a natural partitioning of the orbital space and where also spin-dependent terms are included in the Hamiltonian. The method is based on a new spin-dependent unitary group approach to the many-electron correlation problem due to Gould and Paldus [M. D. Gould and J. Paldus, J. Chem. Phys. 92, 7394, (1990)]. In this approach, the matrix elements of the U(2n) generators in the U(n) x U(2)-adapted electronic Gelfand basis are determined by the matrix elements of a single Ll(n) adjoint tensor operator called the del-operator, denoted by Delta(j)(i) (1 less than or equal to i, j less than or equal to n). Delta or del is a polynomial of degree two in the U(n) matrix E = [E-j(i)]. The approach of Gould and Paldus is based on the transformation properties of the U(2n) generators as an adjoint tensor operator of U(n) x U(2) and application of the Wigner-Eckart theorem. Hence, to generalize this approach, we need to obtain formulas for the complete set of adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis. The nonzero shift coefficients are uniquely determined and may he evaluated by the methods of Gould et al. [see the above reference]. In this article, we define zero-shift adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis which are appropriate to the many-electron problem. By definition, these are proportional to the corresponding two-shell del-operator matrix elements, and it is shown that the Racah factorization lemma applies. Formulas for these coefficients are then obtained by application of the Racah factorization lemma. The zero-shift adjoint reduced Wigner coefficients required for this procedure are evaluated first. All these coefficients are needed later for the multishell case, which leads directly to the two-shell del-operator matrix elements. Finally, we discuss an application to charge and spin densities in a two-shell molecular system. (C) 1998 John Wiley & Sons.
Resumo:
Open system pyrolysis (heating rate 10 degrees C/min) of coal maturity (vitrinite reflectance, VR) sequence (0.5%, 0.8% and 1.4% VR) demonstrates that there are two stages of thermogenic methane generation from Bowen Basin coals. The first and major stage shows a steady increase in methane generation maximising at 570 degrees C, corresponding to a VR of 2-2.5%. This is followed by a less intense methane generation which has not as yet maximised by 800 degrees C (equivalent to VR of 5%). Heavier (C2+) hydrocarbons are generated up to 570 degrees C after which only the C-1 (CH4, CO and CO2) gases are produced. The main phase of heavy hydrocarbon generation occurs between 420 and 510 degrees C. Over this temperature range,methane generation accounts for only a minor component, whereas the wet gases (C-2-C-5) are either in equal abundance or are more abundant by a factor of two than the liquid hydrocarbons. The yields of non-hydrocarbon gases CO2 and CO are greater then methane during the early stages of gas generation from an immature coal, subordinate to methane during the main phase of methane generation after which they are again dominant. Compositional data for desorbed and produced coal seam gases from the Bowen show that CO2 and wet gases are a minor component. This discrepancy between the proportion of wet gas components produced during open system pyrolysis and that observed in naturally matured coals may be the result of preferential migration of wet gas components, by dilution of methane generated during secondary cracking of bitumen, or kinetic effects associated with different activations for production of individual hydrocarbon gases. Extrapolation of results of artificial pyrolysis of the main organic components in coal to geological significant heating rates suggests that isotopically light methane to delta(13)C of -50 parts per thousand can be generated. Carbon isotope depletions in C-13 are further enhanced, however, as a result of trapping of gases over selected rank levels (instantaneous generation) which is a probable explanation for the range of delta(13)C values we have recorded in methane desorbed from Bowen Basin coals (-51 +/- 9 parts per thousand). Pervasive carbonate-rich veins in Bowen Basin coals are the product of magmatism-related hydrothermal activity. Furthermore, the pyrolysis results suggest an additional organic carbon source front CO2 released at any stage during the maturation history could mix in varying proportions with CO2 from the other sources. This interpretation is supported by C and O isotopic ratios, of carbonates that indicate mixing between magmatic and meteoric fluids. Also, the steep slope of the C and O isotope correlation trend suggests that the carbonates were deposited over a very narrow temperature interval basin-wide, or at relatively high temperatures (i.e., greater than 150 degrees C) where mineral-fluid oxygen isotope fractionations are small. These temperatures are high enough for catagenic production of methane and higher hydrocarbons from the coal and coal-derived bitumen. The results suggests that a combination of thermogenic generation of methane and thermodynamic processes associated with CH4/CO2 equilibria are the two most important factors that control the primary isotope and molecular composition of coal seam gases in the Bowen Basin. Biological process are regionally subordinate but may be locally significant. (C) 1998 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
High performance composite membranes based on molecular sieving silica (MSS) were synthesized using sols containing silicon co-polymers (methyltriethoxysilane and tetraethylorthosilicate). Alpha alumina supports were treated with hydrochloric acid prior to sol deposition. Permselectivity of CO2 over CH4 as high as 16.68 was achieved whilst permeability of CO2 up to 36.7 GPU (10(-6) cm(3) (STP) cm(-2) . s(-1) . cm Hg-1) was measured. The best membrane's permeability was finger printed during various stages of the synthesis process showing an increase in CO2/CH4 permselectivity by over 25 times from initial support condition (no membrane film) to the completion of pore structure tailoring. Transport measurement results indicate that the membrane pretreated with HCl has highest permselectivity and permeation rate. In particular, there is a definite cut-off pore size between 3.3 and 3.4 angstroms which is just below the kinetic diameters of Ar and CH4. This demonstrates that the mechanism for the separation in the prepared composite membrane is molecular sieving (activated diffusion), rather than Knudsen diffusion.
Resumo:
A dual catalyst bed system (Au/Fe2O3 + Pt-Pd/Al2O3) for eliminating hydrogen from the CO2 feed gas in urea synthesis is found to be far superior to commercially available and patented catalysts in catalytic activity. At relatively low temperatures, hydrogen is eliminated and coexistent CO is also oxidized completely to useful CO2. This can avoid effectively the accidental explosion of hydrogen-oxygen-ammonia mixed gases, thus ensuring the safety of urea synthesis.