17 resultados para Computer control systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditional real-time control systems are tightly integrated into the industrial processes they govern. Now, however, there is increasing interest in networked control systems. These provide greater flexibility and cost savings by allowing real-time controllers to interact with industrial processes over existing communications networks. New data packet queuing protocols are currently being developed to enable precise real-time control over a network with variable propagation delays. We show how one such protocol was formally modelled using timed automata, and how model checking was used to reveal subtle aspects of the control system's dynamic behaviour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Processor emulators are a software tool for allowing legacy computer programs to be executed on a modern processor. In the past emulators have been used in trivial applications such as maintenance of video games. Now, however, processor emulation is being applied to safety-critical control systems, including military avionics. These applications demand utmost guarantees of correctness, but no verification techniques exist for proving that an emulated system preserves the original system’s functional and timing properties. Here we show how this can be done by combining concepts previously used for reasoning about real-time program compilation, coupled with an understanding of the new and old software architectures. In particular, we show how both the old and new systems can be given a common semantics, thus allowing their behaviours to be compared directly.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper addresses advanced control of a biological nutrient removal (BNR) activated sludge process. Based on a previously validated distributed parameter model of the BNR activated sludge process, we present robust multivariable controller designs for the process, involving loop shaping of plant model, robust stability and performance analyses. Results from three design case studies showed that a multivariable controller with stability margins of 0.163, 0.492 and 1.062 measured by the normalised coprime factor, multiplicative and additive uncertainties respectively give the best results for meeting performance robustness specifications. The controller robustly stabilises effluent nutrients in the presence of uncertainties with the behaviour of phosphorus accumulating organisms as well as to effectively attenuate major disturbances introduced as step changes. This study also shows that, performance of the multivariable robust controller is superior to multi-loops SISO PI controllers for regulating the BNR activated sludge process in terms of robust stability and performance and controlling the process using inlet feed flowrate is infeasible. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fault diagnosis has become an important component in intelligent systems, such as intelligent control systems and intelligent eLearning systems. Reiter's diagnosis theory, described by first-order sentences, has been attracting much attention in this field. However, descriptions and observations of most real-world situations are related to fuzziness because of the incompleteness and the uncertainty of knowledge, e. g., the fault diagnosis of student behaviors in the eLearning processes. In this paper, an extension of Reiter's consistency-based diagnosis methodology, Fuzzy Diagnosis, has been proposed, which is able to deal with incomplete or fuzzy knowledge. A number of important properties of the Fuzzy diagnoses schemes have also been established. The computing of fuzzy diagnoses is mapped to solving a system of inequalities. Some special cases, abstracted from real-world situations, have been discussed. In particular, the fuzzy diagnosis problem, in which fuzzy observations are represented by clause-style fuzzy theories, has been presented and its solving method has also been given. A student fault diagnostic problem abstracted from a simplified real-world eLearning case is described to demonstrate the application of our diagnostic framework.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Power systems rely greatly on ancillary services in maintaining operation security. As one of the most important ancillary services, spinning reserve must be provided effectively in the deregulated market environment. This paper focuses on the design of an integrated market for both electricity and spinning reserve service with particular emphasis on coordinated dispatch of bulk power and spinning reserve services. A new market dispatching mechanism has been developed to minimize the ISO's total payment while ensuring system security. Genetic algorithms are used in the finding of the global optimal solutions for this dispatching problem. Case studies and corresponding analyses haw been carried out to demonstrate and discuss the efficiency and usefulness of the proposed market.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Genetic algorithms (GAs) are known to locate the global optimal solution provided sufficient population and/or generation is used. Practically, a near-optimal satisfactory result can be found by Gas with a limited number of generations. In wireless communications, the exhaustive searching approach is widely applied to many techniques, such as maximum likelihood decoding (MLD) and distance spectrum (DS) techniques. The complexity of the exhaustive searching approach in the MLD or the DS technique is exponential in the number of transmit antennas and the size of the signal constellation for the multiple-input multiple-output (MIMO) communication systems. If a large number of antennas and a large size of signal constellations, e.g. PSK and QAM, are employed in the MIMO systems, the exhaustive searching approach becomes impractical and time consuming. In this paper, the GAs are applied to the MLD and DS techniques to provide a near-optimal performance with a reduced computational complexity for the MIMO systems. Two different GA-based efficient searching approaches are proposed for the MLD and DS techniques, respectively. The first proposed approach is based on a GA with sharing function method, which is employed to locate the multiple solutions of the distance spectrum for the Space-time Trellis Coded Orthogonal Frequency Division Multiplexing (STTC-OFDM) systems. The second approach is the GA-based MLD that attempts to find the closest point to the transmitted signal. The proposed approach can return a satisfactory result with a good initial signal vector provided to the GA. Through simulation results, it is shown that the proposed GA-based efficient searching approaches can achieve near-optimal performance, but with a lower searching complexity comparing with the original MLD and DS techniques for the MIMO systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

DNA Microarray is a powerful tool to measure the level of a mixed population of nucleic acids at one time, which has great impact in many aspects of life sciences research. In order to distinguish nucleic acids with very similar composition by hybridization, it is necessary to design microarray probes with high specificities and sensitivities. Highly specific probes correspond to probes having unique DNA sequences; whereas highly sensitive probes correspond to those with melting temperature within a desired range and having no secondary structure. The selection of these probes from a set of functional DNA sequences (exons) constitutes a computationally expensive discrete non-linear search problem. We delegate the search task to a simple yet effective Evolution Strategy algorithm. The computational efficiency is also greatly improved by making use of an available bioinformatics tool.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Foreign exchange trading has emerged recently as a significant activity in many countries. As with most forms of trading, the activity is influenced by many random parameters so that the creation of a system that effectively emulates the trading process will be very helpful. A major issue for traders in the deregulated Foreign Exchange Market is when to sell and when to buy a particular currency in order to maximize profit. This paper presents novel trading strategies based on the machine learning methods of genetic algorithms and reinforcement learning.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Biological wastewater treatment is a complex, multivariate process, in which a number of physical and biological processes occur simultaneously. In this study, principal component analysis (PCA) and parallel factor analysis (PARAFAC) were used to profile and characterise Lagoon 115E, a multistage biological lagoon treatment system at Melbourne Water's Western Treatment Plant (WTP) in Melbourne, Australia. In this study, the objective was to increase our understanding of the multivariate processes taking place in the lagoon. The data used in the study span a 7-year period during which samples were collected as often as weekly from the ponds of Lagoon 115E and subjected to analysis. The resulting database, involving 19 chemical and physical variables, was studied using the multivariate data analysis methods PCA and PARAFAC. With these methods, alterations in the state of the wastewater due to intrinsic and extrinsic factors could be discerned. The methods were effective in illustrating and visually representing the complex purification stages and cyclic changes occurring along the lagoon system. The two methods proved complementary, with each having its own beneficial features. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new approach to identify multivariable Hammerstein systems is proposed in this paper. By using cardinal cubic spline functions to model the static nonlinearities, the proposed method is effective in modelling processes with hard and/or coupled nonlinearities. With an appropriate transformation, the nonlinear models are parameterized such that the nonlinear identification problem is converted into a linear one. The persistently exciting condition for the transformed input is derived to ensure the estimates are consistent with the true system. A simulation study is performed to demonstrate the effectiveness of the proposed method compared with the existing approaches based on polynomials. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fuzzy data has grown to be an important factor in data mining. Whenever uncertainty exists, simulation can be used as a model. Simulation is very flexible, although it can involve significant levels of computation. This article discusses fuzzy decision-making using the grey related analysis method. Fuzzy models are expected to better reflect decision-making uncertainty, at some cost in accuracy relative to crisp models. Monte Carlo simulation is used to incorporate experimental levels of uncertainty into the data and to measure the impact of fuzzy decision tree models using categorical data. Results are compared with decision tree models based on crisp continuous data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Document classification is a supervised machine learning process, where predefined category labels are assigned to documents based on the hypothesis derived from training set of labelled documents. Documents cannot be directly interpreted by a computer system unless they have been modelled as a collection of computable features. Rogati and Yang [M. Rogati and Y. Yang, Resource selection for domain-specific cross-lingual IR, in SIGIR 2004: Proceedings of the 27th annual international conference on Research and Development in Information Retrieval, ACM Press, Sheffied: United Kingdom, pp. 154-161.] pointed out that the effectiveness of document classification system may vary in different domains. This implies that the quality of document model contributes to the effectiveness of document classification. Conventionally, model evaluation is accomplished by comparing the effectiveness scores of classifiers on model candidates. However, this kind of evaluation methods may encounter either under-fitting or over-fitting problems, because the effectiveness scores are restricted by the learning capacities of classifiers. We propose a model fitness evaluation method to determine whether a model is sufficient to distinguish positive and negative instances while still competent to provide satisfactory effectiveness with a small feature subset. Our experiments demonstrated how the fitness of models are assessed. The results of our work contribute to the researches of feature selection, dimensionality reduction and document classification.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We prove upper and lower bounds relating the quantum gate complexity of a unitary operation, U, to the optimal control cost associated to the synthesis of U. These bounds apply for any optimal control problem, and can be used to show that the quantum gate complexity is essentially equivalent to the optimal control cost for a wide range of problems, including time-optimal control and finding minimal distances on certain Riemannian, sub-Riemannian, and Finslerian manifolds. These results generalize the results of [Nielsen, Dowling, Gu, and Doherty, Science 311, 1133 (2006)], which showed that the gate complexity can be related to distances on a Riemannian manifold.