32 resultados para Climatic variability
Resumo:
1. Ice-volume forced glacial-interglacial cyclicity is the major cause of global climate variation within the late Quaternary period. Within the Australian region, this variation is expressed predominantly as oscillations in moisture availability. Glacial periods were substantially drier than today with restricted distribution of mesic plant communities, shallow or ephemeral water bodies and extensive aeolian dune activity. 2. Superimposed on this cyclicity in Australia is a trend towards drier and/or more variable climates within the last 350 000 years. This trend may have been initiated by changes in atmospheric and ocean circulation resulting from Australia's continued movement into the Southeast Asian region and involving the onset or intensification of the El Nino-Southern Oscillation system and a reduction in summer monsoon activity. 3. Increased biomass burning, stemming originally from increased climatic variability and later enhanced by activities of indigenous people, resulted in a more open and sclerophyllous vegetation, increased salinity and a further reduction in water availability. 4. Past records combined with recent observations suggest that the degree of environmental variability will increase and the drying trend will be enhanced in the foreseeable future, regardless of the extent or nature of human intervention.
Resumo:
It has been established that large numbers of certain trees can survive in the beds of rivers of northeastern Australia where a strongly seasonal distribution of precipitation causes extreme variations in flow on both a yearly and longer-term basis. In these rivers, minimal flow occurs throughout much of any year and for periods of up to several years, allowing the trees to become established and to adapt their form in order to facilitate their survival in environments that experience periodic inundation by fast-flowing, debris-laden water. Such trees (notably paperbark trees of the angiosperm genus Melaleuca) adopt a reclined to prostrate, downstream-trailing habit, have a multiple-stemmed form, modified crown with weeping foliage, development of thick, spongy bark, anchoring of roots into firm to lithified substrates beneath the channel floor, root regeneration, and develop in flow-parallel, linear groves. Individuals from within flow-parallel, linear groves are preserved in situ within the alluvial deposit of the river following burial and death. Four examples of in situ tree fossils within alluvial channel deposits in the Permian of eastern Australia demonstrate that specialised riverbed plant communities also existed at times in the geological past. These examples, from the Lower Permian Carmila Beds, Upper Permian Moranbah Coal Measures and Baralaba Coal Measures of central Queensland and the Upper Permian Newcastle Coal Measures of central New South Wales, show several of the characteristics of trees described from modern rivers in northeastern Australia, including preservation in closely-spaced groups. These properties, together with independent sedimentological evidence, suggest that the Permian trees were adapted to an environment affected by highly variable runoff, albeit in a more temperate climatic situation than the modem Australian examples. It is proposed that occurrences of fossil trees preserved in situ within alluvial channel deposits may be diagnostic of environments controlled by seasonal and longer-term variability in fluvial runoff, and hence may have value in interpreting aspects of palaeoclimate from ancient alluvial successions. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The degree to which palaeoclimatic changes in the Southern Hemisphere co-varied with events in the high latitude Northern Hemisphere during the Last Termination is a contentious issue, with conflicting evidence for the degree of 'teleconnection' between different regions of the Southern Hemisphere. The available hypotheses are difficult to test robustly, however, because there are few detailed palaeoclimatic records in the Southern Hemisphere. Here we present climatic reconstructions from the southwestern Pacific, a key region in the Southern Hemisphere because of the potentially important role it plays in global climate change. The reconstructions for the period 20-10 kyr BP were obtained from five sites along a transect from southern New Zealand, through Australia to Indonesia, supported by 125 calibrated C-14 ages. Two periods of significant climatic change can be identified across the region at around 17 and 14.2 cal kyr BP, most probably associated with the onset of warming in the West Pacific Warm Pool and the collapse of Antarctic ice during Meltwater Pulse-1A, respectively. The severe geochronological constraints that inherently afflict age models based on radiocarbon dating and the lack of quantified climatic parameters make more detailed interpretations problematic, however. There is an urgent need to address the geochronological limitations, and to develop more precise and quantified estimates of the pronounced climate variations that clearly affected this region during the Last Termination. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
It has been established that large numbers of certain trees can survive in the beds of rivers of northeastern Australia where a strongly seasonal distribution of precipitation causes extreme variations in flow on both a yearly and longer-term basis. In these rivers, minimal flow occurs throughout much of any year and for periods of up to several years, allowing the trees to become established and to adapt their form in order to facilitate their survival in environments that experience periodic inundation by fast-flowing, debris-laden water. Such trees (notably paperbark trees of the angiosperm genus Melaleuca) adopt a reclined to prostrate, downstream-trailing habit, have a multiple-stemmed form, modified crown with weeping foliage, development of thick, spongy bark, anchoring of roots into firm to lithified substrates beneath the channel floor, root regeneration, and develop in flow-parallel, linear groves. Individuals from within flow-parallel, linear groves are preserved in situ within the alluvial deposit of the river following burial and death. Four examples of in situ tree fossils within alluvial channel deposits in the Permian of eastern Australia demonstrate that specialised riverbed plant communities also existed at times in the geological past. These examples, from the Lower Permian Carmila Beds, Upper Permian Moranbah Coal Measures and Baralaba Coal Measures of central Queensland and the Upper Permian Newcastle Coal Measures of central New South Wales, show several of the characteristics of trees described from modern rivers in northeastern Australia, including preservation in closely-spaced groups. These properties, together with independent sedimentological evidence, suggest that the Permian trees were adapted to an environment affected by highly variable runoff, albeit in a more temperate climatic situation than the modem Australian examples. It is proposed that occurrences of fossil trees preserved in situ within alluvial channel deposits may be diagnostic of environments controlled by seasonal and longer-term variability in fluvial runoff, and hence may have value in interpreting aspects of palaeoclimate from ancient alluvial successions. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
This paper constructs a reduction sequence model for north Australian points from the eastern Victoria River region, and identifies a single continuum linking unifacial and bifacial point forms, with some divergence from this single reduction trajectory dependent upon artefact size. Chronological changes in reduction intensity between 5,000BP and the present are found to coincide with typological variation in points as well as changing emphasis on the extendibility of point reduction. It is suggested that changes in the extendibility of point reduction can be linked to intensified ENSO-driven climatic variability in the late Holocene that likely increased economic risk and warranted a substantial technological response, including the use of retouched toolkits with potential for longer use-lives.
Resumo:
The development of cropping systems simulation capabilities world-wide combined with easy access to powerful computing has resulted in a plethora of agricultural models and consequently, model applications. Nonetheless, the scientific credibility of such applications and their relevance to farming practice is still being questioned. Our objective in this paper is to highlight some of the model applications from which benefits for farmers were or could be obtained via changed agricultural practice or policy. Changed on-farm practice due to the direct contribution of modelling, while keenly sought after, may in some cases be less achievable than a contribution via agricultural policies. This paper is intended to give some guidance for future model applications. It is not a comprehensive review of model applications, nor is it intended to discuss modelling in the context of social science or extension policy. Rather, we take snapshots around the globe to 'take stock' and to demonstrate that well-defined financial and environmental benefits can be obtained on-farm from the use of models. We highlight the importance of 'relevance' and hence the importance of true partnerships between all stakeholders (farmer, scientists, advisers) for the successful development and adoption of simulation approaches. Specifically, we address some key points that are essential for successful model applications such as: (1) issues to be addressed must be neither trivial nor obvious; (2) a modelling approach must reduce complexity rather than proliferate choices in order to aid the decision-making process (3) the cropping systems must be sufficiently flexible to allow management interventions based on insights gained from models. The pro and cons of normative approaches (e.g. decision support software that can reach a wide audience quickly but are often poorly contextualized for any individual client) versus model applications within the context of an individual client's situation will also be discussed. We suggest that a tandem approach is necessary whereby the latter is used in the early stages of model application for confidence building amongst client groups. This paper focuses on five specific regions that differ fundamentally in terms of environment and socio-economic structure and hence in their requirements for successful model applications. Specifically, we will give examples from Australia and South America (high climatic variability, large areas, low input, technologically advanced); Africa (high climatic variability, small areas, low input, subsistence agriculture); India (high climatic variability, small areas, medium level inputs, technologically progressing; and Europe (relatively low climatic variability, small areas, high input, technologically advanced). The contrast between Australia and Europe will further demonstrate how successful model applications are strongly influenced by the policy framework within which producers operate. We suggest that this might eventually lead to better adoption of fully integrated systems approaches and result in the development of resilient farming systems that are in tune with current climatic conditions and are adaptable to biophysical and socioeconomic variability and change. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Four pollen and charcoal records derived from marine cores around the northern perimeter of Australia are examined to provide a regional picture of patterns, causes and impacts of climate change over the last 100-300 ka. The availability of radiocarbon dates and oxygen isotope records for the cores provides primary chronological control. Spectral analysis of components of these records demonstrates an overall importance of Milankovitch frequencies with clear glacial-interglacial cyclicity dominated by variation in precipitation. In addition, a number of pollen taxa, as well as charcoal particles, exhibit a 30 ka frequency that is considered, from its relationship with biomass burning and with results of past modelling, to reflect changes in the intensity of El Nino-Southern Oscillation (ENSO) variability. Pollen components of all records show a decline, frequently stepwise, in more fire-sensitive vegetation and its replacement with more fire-tolerant vegetation. There is some evidence that this trend is linked to an onset or general increase in ENSO activity and perhaps also to variation in monsoon activity dating from about 300 ka BP that was caused by changes to oceanic circulation within the Indonesian region. The trend may have accelerated within the last 45 ka due to burning by indigenous people. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Mass spectrometric uranium-series dating and C-O isotopic analysis of a stalagmite from Lynds Cave, northern Tasmania, Australia provide a high-resolution record of regional climate change between 5100 and 9200 yr before present (BP). Combined delta(18)O, delta(13)C, growth rate, initial U-234/U-238 and physical property (color, transparency and porosity) records allow recognition of seven climatic stages: Stage I ( > 9080 yr BP) - a relatively dry period at the beginning of stalagmite growth evidenced by elevated U-234/U-238; Stage II (9080-8600 yr BP) - a period of unstable climate characterized by high-frequency variability in temperature and bio-productivity; Stage 111 (8600-8000 yr BP) - a period of stable and moderate precipitation and stable and high bio-productivity, with a continuously rising temperature; Stage IV (8000-7400 yr BP) - the warmest period with high evaporation and low effective precipitation (rainfall less evaporation); Stage V (7400-7000 yr BP) - the wettest period with highest stalagmite growth and enhanced but unstable bio-productivity; Stage VI (7000-6600 yr BP) - a period with a significantly reduced precipitation and bio-productivity without noticeable change in temperature; Stage VII (6600-5100 yr BP) - a period of lowest temperature and precipitation marking a significant climatic deterioration. Overall, the records suggest that the warmest climate occurred between 8000 and 7400 yr BP, followed by a wettest period between 7400 and 7000 yr BP. These are broadly correlated with the so-called 'Mid Holocene optimum' previously proposed using pollen and lake level records. However, the timing and resolution of the speleothem. record from Lynds Cave are significantly higher than in both the pollen and lake level records. This allows us to correlate the abrupt change in physical property, delta(18)O, delta(13)C, growth rate, and initial U-234/U-238 of the stalagmite at similar to8000 yr BP with a global climatic event at Early-Mid Holocene transition. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Malva parviflora L. (Malvaceae) is rapidly becoming a serious weed of Australian farming systems. An understanding of the variability of its seed behaviour is required to enable the development of integrated weed management strategies. Mature M. parviflora seeds were collected from four diverse locations in the Mediterranean-type climatic agricultural region of Western Australia. All of the seeds exhibited physical dormancy at collection; manual scarification or a period of fluctuating summer temperatures (50/20 degrees C or natural) were required to release dormancy. When scarified and germinated soon (1 month) after collection, the majority of seeds were able to germinate over a wide range of temperatures (5-37 degrees C) and had no light requirement. Germination was slower for seeds stored for 2 months than seeds stored for 2 years, suggesting the presence of shallow physiological dormancy. Seed populations from regions with similar annual rainfall exhibited similar dormancy release patterns; seeds from areas of low rainfall (337-344mm) were more responsive to fluctuating temperatures, releasing physical dormancy earlier than those from areas of high rainfall (436-444mm). After 36 months, maximum seedling emergence from soil in the field was 60%, with buried seeds producing 13-34% greater emergence than seeds on the surface. Scanning electron microscopy of the seed coat revealed structural differences in the chalazal region of permeable and impermeable seeds, suggesting the importance of this region in physical dormancy breakdown of M. parviflora seeds. The influence of rainfall during plant growth in determining dormancy release, and hence, germination and emergence timing, must be considered when developing management strategies for M. parviflora.
Resumo:
The endosymbiotic bacterium Wolbachia pipientis infects a wide range of arthropods, in which it induces a variety of reproductive phenotypes, including cytoplasmic incompatibility (CI), parthenogenesis, male killing, and reversal of genetic sex determination. The recent sequencing and annotation of the first Wolbachia genome revealed an unusually high number of genes encoding ankyrin domain (ANK) repeats. These ANK genes are likely to be important in mediating the Wolbachia-host interaction. In this work we determined the distribution and expression of the different ANK genes found in the sequenced Wolbachia wMel genome in nine Wolbachia strains that induce different phenotypic effects in their hosts. A comparison of the ANK genes of wMel and the non-CI-inducing wAu Wolbachia strain revealed significant differences between the strains. This was reflected in sequence variability in shared genes that could result in alterations in the encoded proteins, such as motif deletions, amino acid insertions, and in some cases disruptions due to insertion of transposable elements and premature stops. In addition, one wMel ANK gene, which is part of an operon, was absent in the wAu genome. These variations are likely to affect the affinity, function, and cellular location of the predicted proteins encoded by these genes.
Resumo:
The Australian-bred lucerne cultivars, Trifecta and Sequel, were found to possess useful levels of resistance to both Colletotrichum trifolii races 1 and 2. Race 2 has only been previously observed in the United States and surveys did not reveal its presence in Australia. Multilocus fingerprinting using random amplified polymorphic DNA (RAPDs) analysis revealed low diversity (<10% dissimilarity) within Australian C. trifolii collections, and between the Australian race 1 isolates and a US race 2 isolate. Studies on the inheritance of resistance to C. trifolii race 1 in individual clones from Trifecta and Sequel revealed the presence of 2 different genetic mechanisms. One inheritance was for resistance as a recessive trait, and the other indicated that resistance was dominant. The recessive system has never been previously reported, whereas in the US, 2 completely dominant and independent tetrasomic genes Anl and Ant have been reported to condition C. trifolii resistance. It was not possible to fit the observed segregations from our studies to a single-gene model. In contrast to US studies, clones of cv. Sequel exhibiting the recessive resistance reacted differently to spray and stem injection with C. trifolii inoculum, being resistant to the former and susceptible to the latter, providing additional evidence for the presence of a different genetic mechanism conditioning resistance to those previously reported in the US. As C. trifolii is one of the most serious diseases of lucerne worldwide, the future development of molecular markers closely linked to the dominant and recessive resistances identified in these studies, and the relationships between these resistances and Anl and Ans as determined by genetic mapping, appear to be useful areas of future study.
Resumo:
The El Nino/Southern Oscillation (ENSO) phenomenon is believed to have operated continuously over the last glacial interglacial cycle(1). ENSO variability has been suggested to be linked to millennial-scale oscillations in North Atlantic climate during that time(2,3), but the proposals disagree on whether increased frequency of El Nino events, the warm phase of ENSO, was linked to North Atlantic warm or cold periods. Here we present a high-resolution record of surface moisture, based on the degree of peat humification and the ratio of sedges to grass, from northern Queensland, Australia, covering the past 45,000 yr. We observe millennial-scale dry periods, indicating periods of frequent El Nino events ( summer precipitation declines in El Nino years in northeastern Australia). We find that these dry periods are correlated to the Dansgaard - Oeschger events - millennial-scale warm events in the North Atlantic climate record - although no direct atmospheric connection from the North Atlantic to our site can be invoked. Additionally, we find climatic cycles at a semiprecessional timescale (, 11,900 yr). We suggest that climate variations in the tropical Pacific Ocean on millennial as well as orbital timescales, which determined precipitation in northeastern Australia, also exerted an influence on North Atlantic climate through atmospheric and oceanic teleconnections.