102 resultados para Chronic lower back pain
Resumo:
Exercise is commonly used in the management of chronic musculoskeletal conditions, including chronic low back pain (CLBP). The focus of exercise is varied and may include parameters ranging from strength and endurance training, to specific training of muscle coordination and control. The assumption underpinning these approaches is that improved neuromuscular function will restore or augment the control and support of the spine and pelvis. In a biomechanical model of CLBP, which assumes that pain recurrence is caused by repeated mechanical irritation of pain sensitive structures [1], it is proposed that this improved control and stability would reduce mechanical irritation and lead to pain relief [1]. Although this model provides explanation for the chronicity of LBP, perpetuation of pain is more complex, and contemporary neuroscience holds the view that chronic pain is mediated by a range of changes including both peripheral (eg, peripheral sensitization) and central neuroplastic changes [2]. Although this does not exclude the role of improved control of the lumbar spine and pelvis in management of CLBP, particularly when there is peripheral sensitization, it highlights the need to look beyond outdated simplistic models. One factor that this information highlights is that the refinement of control and coordination may be more important than simple strength and endurance training for the trunk muscles. The objective of this article is to discuss the rationale for core stability exercise in the management of CLBP, to consider critical factors for its implementation, and to review evidence for efficacy of the approach.
Resumo:
Chronic unremittent low back pain (LBP) is characterised by cognitive barriers to treatment. Combining a motor control training approach with individualised education about pain physiology is effective in this group of patients. This randomized comparative trial (i) evaluates an approach to motor control acquisition and training that considers the complexities of the relationship between pain and motor output, and (ii) compares the efficacy and cost of individualized and group pain physiology education. After an "ongoing usual treatment" period, patients participated in a 4-week motor control and pain physiology education program. Patients received four one-hour individualized education sessions (IE) or one 4-hour group lecture (GE). Both groups reduced pain (numerical rating scale) and disability (Roland Morris Disability Questionnaire). IE showed bigger decreases, which were maintained at 12 months (P < 0.05 for all). The combined motor control and education approach is effective. Although group education imparts a lesser effect, it may be more cost-efficient. [ABSTRACT FROM AUTHOR]
Resumo:
Study Design. A systematic review of randomized and quasi-randomized controlled trials. Objectives. To determine the efficacy of prolotherapy injections in adults with chronic low back pain. Summary of Background Data. Prolotherapy is an injection-based treatment for chronic low back pain. Proponents of prolotherapy suggest that some back pain stems from weakened or damaged ligaments. Repeatedly injecting them with irritant solutions is thought to strengthen the ligaments and reduce pain and disability. Prolotherapy protocols usually include co-interventions to enhance the effectiveness of the injections. Methods. The authors searched MEDLINE, EMBASE, CINAHL, and Science Citation Index up to January 2004, and the Cochrane Controlled Trials Register 2004, issue 1, and consulted content experts. Both randomized and quasi-randomized controlled trials comparing prolotherapy injections to control injections, either alone or in combination with other treatments, were included. Studies had to include measures of pain and disability before and after the intervention. Two reviewers independently selected the trials and assessed them for methodologic quality. Treatment and control group protocols varied from study to study, making meta-analysis impossible. Results. Four studies, all of high quality and with a total of 344 participants, were included. All trials measured pain and disability levels at 6 months, three measured the proportion of participants reporting a greater than 50% reduction in pain or disability scores from baseline to 6 months. Two studies showed significant differences between the treatment and control groups for those reporting more than 50% reduction in pain or disability. Their results could not be pooled. In one, cointerventions confounded interpretation of results; in the other, there was no significant difference in mean pain and disability scores between the groups. In the third study, there was little or no difference between groups in the number of individuals who reported more than 50% improvement in pain and disability. The fourth study reporting only mean pain and disability scores showed no differences between groups. Conclusions. There is conflicting evidence regarding the efficacy of prolotherapy injections in reducing pain and disability in patients with chronic low back pain. Conclusions are confounded by clinical heterogeneity among studies and by the presence of co-interventions. There was no evidence that prolotherapy injections alone were more effective than control injections alone. However, in the presence of co-interventions, prolotherapy injections were more effective than control injections, more so when both injections and co-interventions were controlled concurrently.
Resumo:
Objectives. To assess the efficacy of a prolotherapy injection and exercise protocol in the treatment of chronic nonspecific low back pain. Design. Randomized controlled trial with two- by- two factorial design, triple- blinded for injection status, and single- blinded for exercise status. Setting. General practice. Participants. One hundred ten participants with nonspecific low- back pain of average 14 years duration were randomized to have repeated prolotherapy ( 20% glucose/ 0.2% lignocaine) or normal saline injections into tender lumbo- pelvic ligaments and randomized to perform either flexion/ extension exercises or normal activity over 6 months. Main outcome measures: Pain intensity ( VAS) and disability scores ( Roland- Morris) at 2.5, 4, 6, 12, and 24 months. Results. Follow- up was achieved in 96% at 12 months and 80% at 2 years. Ligament injections, with exercises and with normal activity, resulted in significant and sustained reductions in pain and disability throughout the trial, but no attributable effect was found for prolotherapy injections over saline injections or for exercises over normal activity. At 12 months, the proportions achieving more than 50% reduction in pain from baseline by injection group were glucose- lignocaine: 0.46 versus saline: 0.36. By activity group these proportions were exercise: 0.41 versus normal activity: 0.39. Corresponding proportions for > 50% reduction in disability were glucose- lignocaine: 0.42 versus saline 0.36 and exercise: 0.36 versus normal activity: 0.38. There were no between group differences in any of the above measures. Conclusions. In chronic nonspecific low- back pain, significant and sustained reductions in pain and disability occur with ligament injections, irrespective of the solution injected or the concurrent use of exercises.
Resumo:
Objectives: Cognitive-behavioral pain management programs typically achieve improvements in pain cognitions, disability, and physical performance. However, it is not known whether the neurophysiology education component of such programs contributes to these outcomes. In chronic low back pain patients, we investigated the effect of neurophysiology education on cognitions, disability, and physical performance. Methods: This study was a blinded randomized controlled trial. Individual education sessions on neurophysiology of pain (experimental group) and back anatomy and physiology (control group) were conducted by trained physical therapist educators. Cognitions were evaluated using the Survey of Pain Attitudes (revised) (SOPA(R)), and the Pain Catastrophizing Scale (PCS). Behavioral measures included the Roland Morris Disability Questionnaire (RMDQ), and 3 physical performance tasks; (1) straight leg raise (SLR), (2) forward bending range, and (3) an abdominal drawing-in task, which provides a measure of voluntary activation of the deep abdominal muscles. Methodological checks evaluated non-specific effects of intervention. Results: There was a significant treatment effect on the SOPA(R), PCS, SLR, and forward bending. There was a statistically significant effect on RMDQ; however, the size of this effect was small and probably not clinically meaningful. Discussion: Education about pain neurophysiology changes pain cognitions and physical performance but is insufficient by itself to obtain a change in perceived disability. The results suggest that pain neurophysiology education, but not back school type education, should be included in a wider pain management approach.
Resumo:
Background: While one in ten Australians suffer from chronic low back pain this condition remains extremely difficult to treat. Many contemporary treatments are of unknown value. One potentially useful therapy is the use of motor control exercise. This therapy has a biologically plausible effect, is readily available in primary care and it is of modest cost. However, to date, the efficacy of motor control exercise has not been established. Methods: This paper describes the protocol for a clinical trial comparing the effects of motor control exercise versus placebo in the treatment of chronic non-specific low back pain. One hundred and fifty-four participants will be randomly allocated to receive an 8-week program of motor control exercise or placebo (detuned short wave and detuned ultrasound). Measures of outcomes will be obtained at follow-up appointments at 2, 6 and 12 months after randomisation. The primary outcomes are: pain, global perceived effect and patient-generated measure of disability at 2 months and recurrence at 12 months. Discussion: This trial will be the first placebo-controlled trial of motor control exercise. The results will inform best practice for treating chronic low back pain and prevent its occurrence.
Resumo:
The way people with chronic low back pain think about pain can affect the way they move. This case report concerns a patient with chronic disabling low back pain who underwent functional magnetic resonance imaging scans during performance of a voluntary trunk muscle task under three conditions: directly after training in the task and, after one week of practice, before and after a 2.5 hour pain physiology education session. Before education there was widespread brain activity during performance of the task, including activity in cortical regions known to be involved in pain, although the task was not painful. After education widespread activity was absent so that there was no brain activation outside of the primary somatosensory cortex. The results suggest that pain physiology education markedly altered brain activity during performance of the task. The data offer a possible mechanism for difficulty in acquisition of trunk muscle training in people with pain and suggest that the change in activity associated with education may reflect reduced threat value of the task.
Resumo:
Objective To describe patients' perceptions of minimum worthwhile and desired reductions in pain and disability upon commencing treatment for chronic low back pain. Design and Setting Descriptive study nested within a community-based randomized controlled trial on prolotherapy injections and exercises. Patients A total of 110 participants with chronic low back pain. Interventions Prior to treatment, participants were asked what minimum percentage reductions in pain and disability would make treatment worthwhile and what percentage reductions in pain and disability they desired with treatment. Outcome Measures. Minimum worthwhile reductions and desired reductions in pain and disability. Results. Median (inter-quartile range) minimum worthwhile reductions were 25% (20%, 50%) for pain and 35% (20%, 50%) for disability. This compared with desired reductions of 80% (60%, 100%) for pain and 80% (50%, 100%) for disability. The internal consistency between pain and disability responses was high (Spearman's coefficient of association of 0.81 and 0.87, respectively). A significant association existed between minimum worthwhile reductions and desired reductions, but no association was found between these two factors and patient age, gender, pain severity or duration, disability, anxiety, depression, response to treatment, or treatment satisfaction. Conclusions. Inquiring directly about patients' expectations of reductions in pain and in disability is important in establishing realistic treatment goals and setting benchmarks for success. There is a wide disparity between the reductions that they regard as minimum worthwhile and reductions that they hope to achieve. However, there is a high internal consistency between reductions in pain and disability that they expect.