22 resultados para Botulinum toxin-A


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of botulinum neurotoxins for the treatment of muscle hyperactivity and spasticity disorders has been remarkably successful, owing to the abilities of the toxins to elicit prolonged localized paralysis and the rarity of serious adverse effects. However, botulinum toxins are the most deadly protein toxins known, and existing antidotes possess limited effectiveness. Paradoxically, in situ, the intoxicated motoneuron does not die. It reacts by emanating a sprouting network known to implement new functional synapses, leading to resumption of neurotransmission. Recent studies have highlighted ways of accelerating this natural recovery process to overcome paralysis successfully. Developing new therapeutic strategies and treatments for botulism will require more research into the molecular understanding of this 'naturally occurring' recovery process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nerve sprouts emerge from motor nerve terminals following blockade of exo-endocytosis for more than 3 days by botulinum neurotoxin (BoNT), and form functional synapses, albeit temporary. Upon restoration of synaptic activity to the parent terminal 7 and 90 days after exposure to BoNT/F or A respectively, a concomitant retraction of the outgrowths was observed. BoNT/E caused short-term neuroparalysis, and dramatically accelerated the recovery of BoNT/A-paralyzed muscle by further truncation of SNAP-25 and its replenishment with functional full-length SNARE. The removal of 9 C-terminal residues from SNAP-25 by BoNT/A leads to persistence of the inhibitory product due to the formation of a nonproductive SNARE complex(es) at release sites, whereas deletion of a further 17 amino acids permits replenishment and a speedy recovery. (C) 2003 Elsevier Science (USA). All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stx2d is a recently described Shiga toxin whose cytotoxicity is activated 10- to 1,000-fold by the elastase present in mouse or human intestinal mucus. We examined Shiga toxigenic Escherichia coli (STEC) strains isolated from food and livestock sources for the presence of activatable stx(2d). The stx(2) operons of STEC were first analyzed by PCR-restriction fragment length polymorphism (RFLP) analysis and categorized as stx(2), stx(2c) (vha), stx(2c) (vhb), or stx(2d) (EH250). Subsequently, the stx(2c) (vha) and stx(2c) (vhb) operons were screened for the absence of a PstI site in the stx(2a) subunit gene, a restriction site polymorphism which is a predictive indicator for the stx(2d) (activatable) genotype. Twelve STEC isolates carrying putative stx(2d) operons were identified, and nucleotide sequencing was used to confirm the identification of these operons as stx(2d). The complete nucleotide sequences of seven representative stx(2d) operons were determined. Shiga toxin expression in stx(2d) isolates was confirmed by immunoblotting. stx(2d) isolates were induced for the production of bacteriophages carrying stx. Two isolates were able to produce bacteriophages phi1662a and phi1720a carrying the stx(2d) operons. RFLP analysis of bacteriophage genomic DNA revealed that phi1662a and phi1720a were highly related to each other; however, the DNA sequences of these two stx(2d) operons were distinct. The STEC strains carrying these operons were isolated from retail ground beef. Surveillance for STEC strains expressing activatable stx(2d) Shiga toxin among clinical cases may indicate the significance of this toxin subtype to human health.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scorpion toxins are common experimental tools for studies of biochemical and pharmacological properties of ion channels. The number of functionally annotated scorpion toxins is steadily growing, but the number of identified toxin sequences is increasing at much faster pace. With an estimated 100,000 different variants, bioinformatic analysis of scorpion toxins is becoming a necessary tool for their systematic functional analysis. Here, we report a bioinformatics-driven system involving scorpion toxin structural classification, functional annotation, database technology, sequence comparison, nearest neighbour analysis, and decision rules which produces highly accurate predictions of scorpion toxin functional properties. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The plant antimicrobial peptide MiAMP1 from Macadamia integrifolia and the yeast killer toxin peptide WmKT from Williopsis mrakii are structural homologues. Comparative studies of yeast mutants were performed to test their sensitivity to these two antimicrobial peptides. No differences in susceptibility to MiAMP1 were detected between wild-type and several WmKT-resistant mutant yeast strains. A yeast mutant MT1, resistant to MiAMP1 but unaffected in its susceptibility to plant defensins and hydrogen peroxide, also did not show enhanced tolerance towards WmKT. It is therefore probable that the Greek key beta-barrel structure shared by MiAMP1 and WmKT provides a robust structural framework ensuring stability for the two proteins but that the specific action of the peptides depends on other motifs. (C) 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phytochemicals have provided an abundant and effective source of therapeutics for the treatment of cancer. Here we describe the characterization of a novel plant toxin, persin, with in vivo activity in the mammary gland and a p53-, estrogen receptor-, and Bcl-2-independent mode of action. Persin was previously identified from avocado leaves as the toxic principle responsible for mammary gland-specific necrosis and apoptosis in lactating livestock. Here we used a lactating mouse model to confirm that persin has a similar cytotoxicity for the lactating mammary epithelium. Further in vitro studies in a panel of human breast cancer cell lines show that persin selectively induces a G(2)-M cell cycle arrest and caspase-dependent apoptosis in sensitive cells. The latter is dependent on expression of the BH3-only protein Bim. Bim is a sensor of cytoskeletal integrity, and there is evidence that unique structure of the compound, persin could represent a novel class of microtubule-targeting agent with potential specificity for breast cancers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A bacterium (MJ-PV) previously demonstrated to degrade the cyanobacterial toxin microcystin LR, was investigated for bioremediation applications in natural water microcosms and biologically active slow sand filters. Enhanced degradation of microcystin LR was observed with inoculated (1 x 10(6) cell/mL) treatments of river water dosed with microcystin LR (> 80% degradation within 2 days) compared to uninoculated controls. Inoculation of MJ-PV at lower concentrations (1 x 10(2)-1 x 10(5)cells/mL) also demonstrated enhanced microcystin LR degradation over control treatments. Polymerase chain reactions (PCR) specifically targeting amplification of 16S rDNA of MJ-PV and the gene responsible for initial degradation of microcystin LR (mlrA) were successfully applied to monitor the presence of the bacterium in experimental trials. No amplified products indicative of an endemic MJ-PV population were observed in uninoculated treatments indicating other bacterial strains were active in degradation of microcystin LR, Pilot scale biologically active slow sand filters demonstrated degradation of microcystin LR irrespective of MJ-PV bacterial inoculation. PCR analysis detected the MJ-PV population at all locations within the sand filters where microcystin degradation was measured. Despite not observing enhanced degradation of microcystin LR in inoculated columns compared to uninoculated column, these studies demonstrate the effectiveness of a low-technology water treatment system like biologically active slow sand filters for removal of microcystins from reticulated water supplies. Crown Copyright (c) 2006 Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Venomous species have evolved cocktails of bioactive peptides to facilitate prey capture. Given their often exquisite potency and target selectivity, venom peptides provide unique biochemical tools for probing the function of membrane proteins at the molecular level. in the field of the nicotinic acetylcholine receptors (nAChRs), the subtype specific snake alpha-neurotoxins and cone snail alpha-conotoxins have been widely used to probe receptor structure and function in native tissues and recombinant systems. However, only recently has it been possible to generate an accurate molecular view of these nAChR-toxin interactions. Crystal structures of AChBP, a homologue of the nAChR ligand binding domain, have now been solved in complex with alpha-cobratoxin, alpha-conotoxin PnIA and alpha-conotoxin Iml. The orientation of all three toxins in the ACh binding site confirms many of the predictions obtained from mutagenesis and docking simulations on homology models of mammalian nAChR. The precise understanding of the molecular determinants of these complexes is expected to contribute to the development of more selective nAChR modulators. In this commentary, we review the structural data on nAChR-toxin interactions and discuss their implications for the design of novel ligands acting at the nAChR. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cylindrospermopsin (CYN), a potent cyanobacterial hepatotoxin produced by Cylindrospermopsis raciborskii and other cyanobacteria, is regularly found in water supplies in many parts of the world and has been associated with the intoxication of humans and livestock.Water treatment via chlorination can degrade the toxin effectively but result in the production of several byproducts. In this study, male and female Balb/c mice were injected via the intraperitoneal (IP) route with a single dose of 10 mg/kg 5-chlorouracil and 10 mg/kg 5-chloro-6-hydroxymethyluracil; these two compounds are the predicted chlorinated degradation products of CYN.DNA was isolated from the mouse livers and examined for strand breakage by alkaline gel electrophoresis (pH 12). The median molecular length (MML) of the DNA distributed in the gel was determined by estimating the midpoint of the DNA size distribution by densitometry. The toxicity of 5-chlorouracil (as measured by DNA strand breakage) was significantly influenced by time from dosing. There was no significant difference in MML between mice dosed with 5-chloro-6-hydroxymethyluracil and the controls. In another experiment, mice were dosed with 0, 0.1, 1, 10 and 100 mg/kg body weight 5-chlorouracil and 0, 0.1, 1, 10 and 20 mg/kg 5-chloro-6-hydroxymethyluracil via IP injection. The heart, liver, kidney, lung and spleen were removed, fixed and examined under electron microscopy. Liver was the main target organ. The EM results revealed marked distortion on the nuclear membrane of liver cells in mice dosed with 1.0 mg/kg 5-chlorouracil or 10 mg/kg 5-chloro-6-hydroxymethyluracil, or higher.