51 resultados para Blood protein polymorphism
Resumo:
After ingestion of a standardized dose of ethanol, alcohol concentrations were assessed, over 3.5 hours from blood (six readings) and breath (10 readings) in a sample of 412 MZ and DZ twins who took part in an Alcohol Challenge Twin Study (ACTS). Nearly all participants were subsequently genotyped on two polymorphic SNPs in the ADH1B and ADH1C loci known to affect in vitro ADH activity. In the DZ pairs, 14 microsatellite markers covering a 20.5 cM region on chromosome 4 that includes the ADH gene family were assessed, Variation in the timed series of autocorrelated blood and breath alcohol readings was studied using a bivariate simplex design. The contribution of a quantitative trait locus (QTL) or QTL's linked to the ADH region was estimated via a mixture of likelihoods weighted by identity-by-descent probabilities. The effects of allelic substitution at the ADH1B and ADH1C loci were estimated in the means part of the model simultaneously with the effects sex and age. There was a major contribution to variance in alcohol metabolism due to a QTL which accounted for about 64% of the additive genetic covariation common to both blood and breath alcohol readings at the first time point. No effects of the ADH1B*47His or ADH1C*349Ile alleles on in vivo metabolism were observed, although these have been shown to have major effects in vitro. This implies that there is a major determinant of variation for in vivo alcohol metabolism in the ADH region that is not accounted for by these polymorphisms. Earlier analyses of these data suggested that alcohol metabolism is related to drinking behavior and imply that this QTL may be protective against alcohol dependence.
Resumo:
To date, a role for agouti signalling protein (ASIP) in human pigmentation has not been well characterized. It is known that agouti plays a pivotal role in the pigment switch from the dark eumelanin to the light pheomelanin in the mouse. However, because humans do not have an agouti banded hair pattern, its role in human pigmentation has been questioned. We previously identified a single polymorphism in the 3'-untranslated region (UTR) of ASIP that was found at a higher frequency in African-Americans compared with other population groups. To compare allele frequencies between European-Australians and indigenous Australians, the g.8818A -> G polymorphism was genotyped. Significant differences were seen in allele frequencies between these groups (P < 0.0001) with carriage of the G allele highest in Australian Aborigines. In the Caucasian sample set a strong association was observed between the G allele and dark hair colour (P = 0.004) (odds ratio 4.6; 95% CI 1.4-15.27). The functional consequences of this polymorphism are not known but it was postulated that it might result in message instability and premature degradation of the transcript. To test this hypothesis, ASIP mRNA levels were quantified in melanocytes carrying the variant and non-variant alleles. Using quantitative real-time polymerase chain reaction the mean ASIP mRNA ratio of the AA genotype to the AG genotype was 12 (P < 0.05). This study suggests that the 3'-UTR polymorphism results in decreased levels of ASIP and therefore less pheomelanin production.
Resumo:
Human N-acetyltransferase type 1 (NAT1) catalyses the N- or O-acetylation of various arylamine and heterocyclic amine substrates and is able to bioactivate several known carcinogens. Despite wide inter-individual variability in activity, historically, NAT1 was considered to be monomorphic in nature. However, recent reports of allelic variation at the NAT1 locus suggest that it may be a polymorphically expressed enzyme. In the present study, peripheral blood mononuclear cell NAT1 activity in 85 individuals was found to be bimodally distributed with approximately 8% of the population being slow acetylators. Subsequent sequencing of the individuals having slow acetylator status showed all to have either a (CT)-T-190 or G(560)A base substitution located in the protein encoding region of the NAT1 gene. The (CT)-T-190 base substitution changed a highly conserved Arg(64), which others have shown to be essential for fully functional NAT1 protein. The (CT)-T-190 mutation has not been reported previously and we have named it NAT1*17. The G(560)A mutation is associated with the base substitutions previously observed in the NAT1*10 allele and this variant (NAT1*14) encodes for a protein with reduced acetylation capacity. A novel method using linear PCR and dideoxy terminators was developed for the detection of NAT1*14 and NAT1*17. Neither of these variants was found in the rapid acetylator population. We conclude that both the (CT)-T-190 (NAT1*17) and G(560)A (NAT1*14) NAT1 structural variants are involved in a distinct NAT1 polymorphism. Because NAT1 can bioactivate several carcinogens, this polymorphism may have implications for cancer risk in individual subjects. (C) 1998 Chapman & Hall Ltd.
Resumo:
The targeting of topically applied drug molecules into tissues below a site of application requires an understanding of the complex interrelationships between the drug, its formulation, the barrier properties of the skin, and the physiological processes occurring below the skin that are responsible for drug clearance from the site, tissue, and/or systemic distribution and eventual elimination. There is still a certain amount of controversy over the ability of topically applied drugs to penetrate into deeper tissues by diffusion or whether this occurs by redistribution in the systemic circulation. The major focus of our work in this area has been in determining how changes in drug structure and physicochemical properties, such as protein binding and lipophilicity, affect drug clearance into the local dermal microcirculation and lymphatics, as well as subsequent distribution into deeper tissues below an application site. The present study outlines our recent thinking on the drug molecule optimal physical attributes, in terms of plasma and tissue partitioning behaviour, that offer the greatest potential for deep tissue targeting. Drug Dev. Res. 46:309-315, 1999. (C) 1999 Wiley-Liss, Inc.
Resumo:
Hsp10 (10-kDa heat shock protein, also known as chaperonin 10 or Cpn10) is a co-chaperone for Hsp60 in the protein folding process. This protein has also been shown to be identical to the early pregnancy factor, which is an immunosuppressive growth factor found in maternal serum. In this study we have used immunogold electron microscopy to study the subcellular localization of Hsp10 in rat tissues sections embedded in LR Gold resin employing polyclonal antibodies raised against different regions of human Hsp10. In all rat tissues examined including liver, heart, pancreas, kidney, anterior pituitary, salivary gland, thyroid, and adrenal gland, antibodies to Hsp10 showed strong labeling of mitochondria. However, in a number of tissues, in addition to the mitochondrial labeling, strong and highly specific labeling with the Hsp10 antibodies was also observed in several extramitochondrial compartments. These sites included zymogen granules in pancreatic acinar cells, growth hormone granules in anterior pituitary, and secretory granules in PP pancreatic islet cells. Additionally, the mature red blood cells which lack mitochondria, also showed strong reactivity with the Hsp10 antibodies. The observed labeling with the Hsp10 antibodies, both within mitochondria as well as in other compartments/cells, was abolished upon omission of the primary antibodies or upon preadsorption of the primary antibodies with the purified recombinant human Hsp10. These results provide evidence that similar to a number of other recently described mitochondrial proteins (viz., Hsp60, tumor necrosis factor receptor-associated protein- 1, P32 (gC1q-R) protein, and cytochrome c), Hsp10 is also found at a variety of specific extramitochondrial sites in normal rat tissue. These results raise important questions as to how these mitochondrial proteins are translocated to other compartments and their possible function(s) at these sites. The presence of these proteins at extramitochondrial sites in normal tissues has important implications concerning the role of mitochondria in apoptosis and genetic diseases.
Resumo:
Merozoite surface protein 1 (MSP1) of malaria parasites undergoes proteolytic processing at least twice before invasion into a new RBC. The 42-kDa fragment, a product of primary processing, is cleaved by proteolytic enzymes giving rise to MSP1(33), which is shed from the merozoite surface, and MSP1(19), which is the only fragment carried into a new RBC. In this study, we have identified T cell epitopes on MSP1(33) of Plasmodium yoelii and have examined their function in immunity to blood stage malaria. Peptides 20 aa in length, spanning the length of MSP1(33) and overlapping each other by 10 aa, were analyzed for their ability to induce T cell proliferation in immunized BALB/c and C57BL/6 mice. Multiple epitopes were recognized by these two strains of mice. Effector functions of the dominant epitopes were then investigated. Peptides Cm15 and Cm21 were of particular interest as they were able to induce effector T cells capable of delaying growth of lethal P. yoelii YM following adoptive transfer into immuno-deficient mice without inducing detectable Ab responses. Homologs of these epitopes could be candidates for inclusion in a subunit vaccine.
Resumo:
Marine invertebrate sperm proteins are particularly interesting because they are characterized by positive selection and are likely to be involved in prezyogotic isolation and, thus, speciation. Here, we present the first survey of inter and intraspecific variation of a bivalve sperm protein among a group of species that regularly hybridize in nature. M7 lysin is found in sperm acrosomes of mussels and dissolves the egg vitelline coat, permitting fertilization. We sequenced multiple alleles of the mature protein-coding region of M7 lysin from allopatric populations of mussels in the Mytilus edulis species group (M. edulis, M. galloprovincialis, and M. trossulus). A significant McDonald-Kreitman test showed an excess of fixed amino acid replacing substitutions between species, consistent with positive selection. In addition, Kolmogorov-Smirnov tests showed significant heterogeneity in polymorphism to divergence ratios for both synonymous variation and combined synonymous and non-synonymous variation within M. galloprovincialis. These results indicate that there has been adaptive evolution at M7 lysin and, furthermore, shows that positive selection on sperm proteins can occur even when post-zygotic reproductive isolation is incomplete.
Resumo:
Increasing evidence from human epidemiological studies suggests that poor growth before birth is associated with postnatal growth retardation and the development of cardiovascular disease in adulthood. We have shown previously that nutritional deprivation in the pregnant rat leads to intrauterine growth retardation (IUGR), postnatal growth failure, changes in the endocrine parameters of the somatotrophic axis, and to increased blood pressure in later life. In the present study, we investigated whether administration of insulin-like growth factor-I (IGF-I) or bovine growth hormone (GH) during pregnancy could prevent IUGR and/or alter long-term outcome. Dams h-om day 1 of pregnancy throughout gestation received a diet of nd libitum available food or a restricted dietary intake of 30% of ad libitum fed dams. From day 10 of gestation, dams were treated for 10 days with three times daily subcutaneous injections of saline (100 mu l), IGF-I (2 mu g/g body weight) or GH (2 mu g/g body weight). Maternal weight gain was significantly increased (P
Resumo:
Dendritic cells (DCs) are the most potent professional antigen-presenting cells (APCs), which play a vital role in primary immune responses. Introducing genes into DCs will allow constitutive expression of the encoded proteins and thus prolong the presentation of the antigens derived therefrom. In addition, multiple and unidentified epitopes encoded by the entire tumor-associated antigen (TAA) gene may enhance T cell activation. This study demonstrated that an HIV-1-based lentiviral vector conferred efficient gene transfer to DCs. The transgene, murine tyrosinase-related protein 2 (mTRP-2), encodes a clinically relevant melanoma-associated antigen (MAA), which has been found to be a tumor rejection antigen for B16 melanoma. The transfer and proper processing of mTRP-2 in DCs, in terms of RNA transcription activity and protein expression, were verified by RT-PCR and specific antibody, respectively. Administration of mTRP-2 gene-modified DCs (DC-HR'CmT2) to C57BL/6 mice evoked strong protection against tumor challenge, for which the presence of CD4(+) and CD8(+) cells during both the priming and challenge phase was essential. In a therapy model, our results showed that four of seven mice with preestablished tumor remained tumor free for 80 days after therapeutic vaccination. Given the results shown in this study, mTRP-2 gene transfer to DCs provides a potential therapeutic strategy for the management of melanoma, especially in the early stage of the disease.
Resumo:
Spray-dried blood plasma (DBP) (10.9 g/100 g [w/w] nitrogen) was added to medium-protein biscuit flour (1.4 g/100 g N) during pasta manufacture. High-protein durum semolina (2.0 g/100 g N) Was used to produce the control pasta. Sensory data indicated that the addition of DBP produced pasta with significantly better colour intensity and acceptability. aroma intensity, flaN our intensity. textural strength, texture acceptability, aftertaste intensity, aftertaste acceptability. and overall acceptability The DBP/biscuit flour formulation that gave the optimum balance between pasta protein content and organoleptic acceptability contained 2.2 g/100 g DBP. A higher content of DBP resulted in increased protein levels, but these pasta formulations, ere less acceptable organoleptically. (C) 2002 Swiss Society of Food Science and Technology. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Polydnaviruses are essential for the survival of many Ichneumonoid endoparasitoids, providing active immune suppression of the host in which parasitoid larvae develop. The Cotesia rubecula bracovirus is unique among polydnaviruses in that only four major genes are detected in parasitized host ( Pieris rapae) tissues, and gene expression is transient. Here we describe a novel C. rubecula bracovirus gene (CrV3) encoding a lectin monomer composed of 159 amino acids, which has conserved residues consistent with invertebrate and mammalian C-type lectins. Bacterially expressed CrV3 agglutinated sheep red blood cells in a divalent ion-dependent but Ca2+-independent manner. Agglutination was inhibited by EDTA but not by biological concentrations of any saccharides tested. Two monomers of similar to14 and similar to17 kDa in size were identified on SDS-PAGE in parasitized P. rapae larvae. The 17-kDa monomer was found to be an N-glyscosylated form of the 14-kDa monomer. CrV3 is produced in infected hemocytes and fat body cells and subsequently secreted into hemolymph. We propose that CrV3 is a novel lectin, the first characterized from an invertebrate virus. CrV3 shows over 60% homology with hypothetical proteins isolated from polydnaviruses in two other Cotesia wasps, indicating that these proteins may also be C-type lectins and that a novel polydnavirus lectin family exists in Cotesia-associated bracoviruses. CrV3 is probably interacting with components in host hemolymph, resulting in suppression of the Pieris immune response. The high similarity of CrV3 with invertebrate lectins, as opposed to those from viruses, may indicate that some bracovirus functions were acquired from their hosts.
Resumo:
Human N-acetyltransferase Type I (NAT1) catalyses the acetylation of many aromatic amine and hydrazine compounds and it has been implicated in the catabolism of folic acid. The enzyme is widely expressed in the body, although there are considerable differences in the level of activity between tissues. A search of the mRNA databases revealed the presence of several NAT1 transcripts in human tissue that appear to be derived from different promoters. Because little is known about NAT1 gene regulation, the present study was undertaken to characterize one of the putative promoter sequences of the NAT1 gene located just upstream of the coding region. We show with reverse-transcriptase PCR that mRNA transcribed from this promoter (Promoter 1) is present in a variety of human cell-lines, but not in quiescent peripheral blood mononuclear cells. Using deletion mutant constructs, we identified a 20 bp sequence located 245 bases upstream of the translation start site which was sufficient for basal NAT1 expression. It comprised an AP-1 (activator protein 1)-binding site, flanked on either side by a TCATT motif. Mutational analysis showed that the AP-1 site and the 3' TCATT sequence were necessary for gene expression, whereas the 5' TCATT appeared to attenuate promoter activity. Electromobility shift assays revealed two specific bands made up by complexes of c-Fos/Fra, c-Jun, YY-1 (Yin and Yang 1) and possibly Oct-1. PMA treatment enhanced expression from the NAT1 promoter via the AP-1-binding site. Furthermore, in peripheral blood mononuclear cells, PMA increased endogenous NAT1 activity and induced mRNA expression from Promoter I, suggesting that it is functional in vivo.
Resumo:
Background and Purpose - Epidemiological and laboratory studies suggest that increasing concentrations of plasma homocysteine ( total homocysteine [tHcy]) accelerate cardiovascular disease by promoting vascular inflammation, endothelial dysfunction, and hypercoagulability. Methods - We conducted a randomized controlled trial in 285 patients with recent transient ischemic attack or stroke to examine the effect of lowering tHcy with folic acid 2 mg, vitamin B-12 0.5 mg, and vitamin B-6 25 mg compared with placebo on laboratory markers of vascular inflammation, endothelial dysfunction, and hypercoagulability. Results - At 6 months after randomization, there was no significant difference in blood concentrations of markers of vascular inflammation (high-sensitivity C-reactive protein [P = 0.32]; soluble CD40L [ P = 0.33]; IL-6 [P = 0.77]), endothelial dysfunction ( vascular cell adhesion molecule-1 [P = 0.27]; intercellular adhesion molecule-1 [P = 0.08]; von Willebrand factor [P = 0.92]), and hypercoagulability (P-selectin [P = 0.33]; prothrombin fragment 1 and 2 [P = 0.81]; D-dimer [P = 0.88]) among patients assigned vitamin therapy compared with placebo despite a 3.7-mumol/L (95% CI, 2.7 to 4.7) reduction in total homocysteine (tHcy). Conclusions - Lowering tHcy by 3.7 mumol/L with folic acid-based multivitamin therapy does not significantly reduce blood concentrations of the biomarkers of inflammation, endothelial dysfunction, or hypercoagulability measured in our study. The possible explanations for our findings are: ( 1) these biomarkers are not sensitive to the effects of lowering tHcy (eg, multiple risk factor interventions may be required); ( 2) elevated tHcy causes cardiovascular disease by mechanisms other than the biomarkers measured; or ( 3) elevated tHcy is a noncausal marker of increased vascular risk.
Resumo:
The genetic mechanisms responsible for the formation of adrenocortical adenomas which autonomously produce aldosterone are largely unknown, The adrenal renin-angiotensin system has been implicated in the pathophysiology of these tumours, Angiotensin-converting enzyme (ACE) catalyses the generation of angiotensin II, and the insertion/deletion (I/D) polymorphism of the ACE gene regulates up to 50% of plasma and cellular ACE variability in humans. We therefore examined the genotypic and allelic frequency distributions of the ACE gene I/D polymorphism in 55 patients with aldosterone-producing adenoma, APA, (angiotensin-unresponsive APA n = 28, angiotensin-responsive APA n = 27), and 80 control subjects with no family history of hypertension, We also compared the ACE gene I/D polymorphism allelic pattern in matched tumour and peripheral blood DNA in the 55 patients with APA, The frequency of the D allele was 0.518 and 0.512 and the I allele was 0.482 and 0.488 in the APA and control subjects respectively, Genotypic and allelic frequency analysis found no significant differences between the groups, Examination of the matched tumour and peripheral blood DNA samples revealed the loss of the insertion allele in four of the 25 patients who were heterozygous for the ACE I/D genotype. The I/D polymorphism of the ACE gene does not appear to contribute to the biochemical and phenotypic characteristics of APA, however, the deletion of the insertion allele of the ACE gene I/D polymorphism in 16% of aldosterone-producing adenomas may represent the loss of a tumour suppressor gene/s or other genes on chromosome 17q which may contribute to tumorigenesis in APA.