54 resultados para Bartlett
Resumo:
The ciliary neurotrophic factor alpha-receptor(CNTFRalpha) is required for motoneuron survival during development, but the relevant ligand(s) has not been determined. One candidate is the heterodimer formed by cardiotrophin-like cytokine (CLC) and cytokine-like factor 1 (CLF). CLC/CLF binds to CNTFRalpha and enhances the survival of developing motoneurons in vitro; whether this novel trophic factor plays a role in neural development in vivo has not been tested. We examined motor and sensory neurons in embryonic chicks treated with CLC and in mice with a targeted deletion of the clf gene. Treatment with CLC increased the number of lumbar spinal cord motoneurons that survived the cell death period in chicks. However, this effect was regionally specific, because brachial and thoracic motoneurons were unaffected. Similarly, newborn clf -/- mice exhibited a significant reduction in lumbar motoneurons, with no change in the brachial or thoracic cord. Clf deletion also affected brainstem motor nuclei in a regionally specific manner; the number of motoneurons in the facial but not hypoglossal nucleus was significantly reduced. Sensory neurons of the dorsal root ganglia were not affected by either CLC treatment or clf gene deletion. Finally, mRNA for both clc and clf was found in skeletal muscle fibers of embryonic mice during the motoneuron cell death period. These findings support the view that CLC/CLF is a target-derived factor required for the survival of specific pools of motoneurons. The in vivo actions of CLC and CLF can account for many of the effects of CNTFRalpha on developing motoneurons.
Resumo:
The Mechanism Underlying the development of tolerance to morphine, is still incompletely understood. Morphine binds to opioid receptors, Which in turn activates downstream second messenger cascades through heterotrimeric guanine nucleotide binding proteins (G proteins). In this paper, we show that G(z), a member of the inhibitory G protein family, plays an important role in mediating the analgesic and lethality effects of morphine after tolerance development. We blocked signaling through the G(z) second messenger cascade by genetic ablation of the alpha subunit of the G protein in mice. The Galpha(z) knockout Mouse develops significantly increased tolerance to morphine. which depends oil Galpha(z), gene dosage. Further experiments demonstrate that the enhanced morphine tolerance is not caused by pharmacokinetic and behavioural learning mechanisms. The results suggest that G(z) signaling pathways are involved ill transducing the analgesic and lethality effects of morphine following chronic morphine treatment. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Measuring the polarization of a single photon typically results in its destruction. We propose, demonstrate, and completely characterize a quantum nondemolition (QND) scheme for realizing such a measurement nondestructively. This scheme uses only linear optics and photodetection of ancillary modes to induce a strong nonlinearity at the single-photon level, nondeterministically. We vary this QND measurement continuously into the weak regime and use it to perform a nondestructive test of complementarity in quantum mechanics. Our scheme realizes the most advanced general measurement of a qubit to date: it is nondestructive, can be made in any basis, and with arbitrary strength.
Resumo:
We provide optimal measurement schemes for estimating relative parameters of the quantum state of a pair of spin systems. We prove that the optimal measurements are joint measurements on the pair of systems, meaning that they cannot be achieved by local operations and classical communication. We also demonstrate that in the limit where one of the spins becomes macroscopic, our results reproduce those that are obtained by treating that spin as a classical reference direction.
Resumo:
We produce and holographically measure entangled qudits encoded in transverse spatial modes of single photons. With the novel use of a quantum state tomography method that only requires two-state superpositions, we achieve the most complete characterization of entangled qutrits to date. Ideally, entangled qutrits provide better security than qubits in quantum bit commitment: we model the sensitivity of this to mixture and show experimentally and theoretically that qutrits with even a small amount of decoherence cannot offer increased security over qubits.
Resumo:
We investigate quantum many-body systems where all low-energy states are entangled. As a tool for quantifying such systems, we introduce the concept of the entanglement gap, which is the difference in energy between the ground-state energy and the minimum energy that a separable (unentangled) state may attain. If the energy of the system lies within the entanglement gap, the state of the system is guaranteed to be entangled. We find Hamiltonians that have the largest possible entanglement gap; for a system consisting of two interacting spin-1/2 subsystems, the Heisenberg antiferromagnet is one such example. We also introduce a related concept, the entanglement-gap temperature: the temperature below which the thermal state is certainly entangled, as witnessed by its energy. We give an example of a bipartite Hamiltonian with an arbitrarily high entanglement-gap temperature for fixed total energy range. For bipartite spin lattices we prove a theorem demonstrating that the entanglement gap necessarily decreases as the coordination number is increased. We investigate frustrated lattices and quantum phase transitions as physical phenomena that affect the entanglement gap.
Resumo:
Q fever is a common zoonosis worldwide. Awareness of the disease and newer diagnostic modalities have resulted in increasing recognition of unusual manifestations. We report 3 cases of Q fever osteomyelitis in children and review the literature on 11 other reported cases. The cases demonstrate that Coxiella burnetii can cause granulomatous osteomyelitis that presents without systemic symptoms and frequently results in a chronic, relapsing, multifocal clinical course. Optimal selection and duration of antimicrobial therapy and methods of monitoring therapy are currently uncertain.
Resumo:
Spinal cord injury usually results in permanent paralysis because of lack of regrowth of damaged neurons. Here we demonstrate that adult mice lacking EphA4 (-/-), a molecule essential for correct guidance of spinal cord axons during development, exhibit axonal regeneration and functional recovery after spinal cord hemisection. Anterograde and retrograde tracing showed that axons from multiple pathways, including corticospinal and rubrospinal tracts, crossed the lesion site. EphA4 -/- mice recovered stride length, the ability to walk on and climb a grid, and the ability to grasp with the affected hindpaw within 1-3 months of injury. EphA4 expression was upregulated on astrocytes at the lesion site in wild-type mice, whereas astrocytic gliosis and the glial scar were greatly reduced in lesioned EphA4-/- spinal cords. EphA4 -/- astrocytes failed to respond to the inflammatory cytokines, interferon-gamma or leukemia inhibitory factor, in vitro. Neurons grown on wild-type astrocytes extended shorter neurites than on EphA4 -/- astrocytes, but longer neurites when the astrocyte EphA4 was blocked by monomeric EphrinA5-Fc. Thus, EphA4 regulates two important features of spinal cord injury, axonal inhibition, and astrocytic gliosis.
Resumo:
Recently we have shown that growth hormone (GH) inhibits neuronal differentiation and that this process is blocked by suppressor of cytokine signalling-2 (SOCS2). Here we examine several cortical and subcortical neuronal populations in GH hyper-responsive SOCS2 null (-/-) mice and GH non-responsive GH receptor null (GHR-/-) mice. While SOCS2-/- mice showed a 30% decrease in density of NeuN positive neurons in cortex compared to wildtype, GHR-/- mice showed a 25% increase even though brain size was decreased. Interneuron sub-populations were variably affected, with a slight decrease in cortical parvalbumin expressing interneurons in SOCS2-/- mice and an increase in cortical calbindin and calretinin and striatal cholinergic neuron density in GHR-/- mice. Analysis of glial cell numbers in cresyl violet or glial fibrillary acidic protein (GFAP) stained sections of cortex showed that the neuron: glia ratio was increased in GHR-/- mice and decreased in SOCS2-/- mice. The astrocytes in GHR-/- mice appeared smaller, while they were larger in SOCS2-/- mice. Neuronal soma size also varied in the different genotypes, with smaller striatal cholinergic neurons in GHR-/- mice. While the size of layer 5 pyramidal neurons was not significantly different from wildtype, SOCS2-/- neurons were larger than GHR-/- neurons. In addition, primary dendritic length was similar in all genotypes but dendritic branching of pyramidal neurons in the cortex appeared sparser in GHR-/- and SOCS2-/- mice. These results suggest that GH, possibly regulated by SOCS2, has multiple effects on central nervous system (CNS) development and maturation, regulating the number and size of multiple neuronal and glial cell types.
Resumo:
The role of p75 neurotrophin receptor (p75(NTR)) in mediating cell death is now well charaterized, however, it is only recently that details of the death signaling pathway have become clearer. This review focuses on the importance of the juxtamembrane Chopper domain region of p75(NTR) in this process. Evidence supporting the involvement of K+ efflux, the apoptosome (caspase-9, apoptosis activating factor-1, APAF-1, and Bcl-(xL)), caspase-3, c-jun kinase, and p53 in the p75(NTR) cell death pathway is discussed and regulatory roles for the p75(NTR) ectodomain and death domain are proposed. The role of synaptic activity is also discussed, in particular the importance of neutrotransmitter-activated K+ channels acting as the gatekeepers of cell survival decisions during development and in neurodegenerative conditions.