26 resultados para Balanced graphs
Resumo:
Let K(r, s, t) denote the complete tripartite graph with partite sets of size r, s and t, where r less than or equal to s less than or equal to t. Let D be the graph consisting of a triangle with an edge attached. We show that K(r, s, t) may be decomposed into copies of D if and only if 4 divides rs + st + rt and t less than or equal to 3rs/(r + s).
Resumo:
In this note we first introduce balanced critical sets and near balanced critical sets in Latin squares. Then we prove that there exist balanced critical sets in the back circulant Latin squares of order 3n for n even. Using this result we decompose the back circulant Latin squares of order 3n, n even, into three isotopic and disjoint balanced critical sets each of size 3n. We also find near balanced critical sets in the back circulant Latin squares of order 3n for n odd. Finally, we examine representatives of each main class of Latin squares of order up to six in order to determine which main classes contain balanced or near balanced critical sets.
Resumo:
A graph G is a common multiple of two graphs H-1 and H-2 if there exists a decomposition of G into edge-disjoint copies of H-1 and also a decomposition of G into edge-disjoint copies of H-2. In this paper, we consider the case where H-1 is the 4-cycle C-4 and H-2 is the complete graph with n vertices K-n. We determine, for all positive integers n, the set of integers q for which there exists a common multiple of C-4 and K-n having precisely q edges. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
A cube factorization of the complete graph on n vertices, K-n, is a 3-factorization of & in which the components of each factor are cubes. We show that there exists a cube factorization of & if and only if n equivalent to 16 (mod 24), thus providing a new family of uniform 3 -factorizations as well as a partial solution to an open problem posed by Kotzig in 1979. (C) 2004 Wiley Periodicals, Inc.
Resumo:
Let G be a graph that admits a perfect matching. A forcing set for a perfect matching M of G is a subset S of M, such that S is contained in no other perfect matching of G. This notion has arisen in the study of finding resonance structures of a given molecule in chemistry. Similar concepts have been studied for block designs and graph colorings under the name defining set, and for Latin squares under the name critical set. There is some study of forcing sets of hexagonal systems in the context of chemistry, but only a few other classes of graphs have been considered. For the hypercubes Q(n), it turns out to be a very interesting notion which includes many challenging problems. In this paper we study the computational complexity of finding the forcing number of graphs, and we give some results on the possible values of forcing number for different matchings of the hypercube Q(n). Also we show an application to critical sets in back circulant Latin rectangles. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
For all odd integers n greater than or equal to 1, let G(n) denote the complete graph of order n, and for all even integers n greater than or equal to 2 let G,, denote the complete graph of order n with the edges of a 1-factor removed. It is shown that for all non-negative integers h and t and all positive integers n, G, can be decomposed into h Hamilton cycles and t triangles if and only if nh + 3t is the number of edges in G(n). (C) 2004 Wiley Periodicals, Inc.
Resumo:
It is shown that variance-balanced designs can be obtained from Type I orthogonal arrays for many general models with two kinds of treatment effects, including ones for interference, with general dependence structures. These designs can be used to obtain optimal and efficient designs. Some examples and design comparisons are given. (C) 2002 Elsevier B.V. All rights reserved.
Resumo:
The Steiner trade spectrum of a simple graph G is the set of all integers t for which there is a simple graph H whose edges can be partitioned into t copies of G in two entirely different ways. The Steiner trade spectra of complete partite graphs were determined in all but a few cases in a recent paper by Billington and Hoffman (Discrete Math. 250 (2002) 23). In this paper we resolve the remaining cases. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Let G be a graph in which each vertex has been coloured using one of k colours, say c(1), c(2),.. , c(k). If an m-cycle C in G has n(i) vertices coloured c(i), i = 1, 2,..., k, and vertical bar n(i) - n(j)vertical bar <= 1 for any i, j is an element of {1, 2,..., k}, then C is said to be equitably k-coloured. An m-cycle decomposition C of a graph G is equitably k-colourable if the vertices of G can be coloured so that every m-cycle in W is equitably k-coloured. For m = 3, 4 and 5 we completely settle the existence question for equitably 3-colourable m-cycle decompositions of complete equipartite graphs. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Proportionally balanced designs (pi BDs) were introduced by Gray and Matters in response to a need for the allocation of markers of the Queensland Core Skills Test to have a certain property. Subsequent papers extended the theoretical results relating to such designs and provided further instances and general constructions. This work focused on designs comprising blocks of precisely two sizes, and when each variety occurs with one of precisely two possible frequencies. Two designs based on the set V of varieties are complementary if, whenever B is a block of one, then its complement with regard to the set V is a block of the other. Here we present necessary conditions for the existence of complementary pairs of such pi BDs and provide lists of some restricted parameter sets satisfying these necessary conditions. The lists are arranged according to the number of blocks. We demonstrate that not all of these parameter sets give rise to designs. However we establish by construction of the sets of blocks that, for every feasible number of blocks less than or equal to 100, with the possible exception of 63, there exists at least one pair of complementary pi BDs. We also investigate the conditions under which the complementary design can be isomorphic to the original design, and again provide a list of feasible parameters for pairs of such designs with at most 400 blocks.
Resumo:
A maximum packing of any lambda-fold complete multipartite graph (where there are lambda edges between any two vertices in different parts) with edge-disjoint 4- cycles is obtained and the size of each minimum leave is given. Moreover, when lambda =2, maximum 4-cycle packings are found for all possible leaves.
Resumo:
Beginning Reading: A Balanced Approach to Literacy Instruction during the First Three Years at School by Yola Center is intended for those involved in teaching and supporting literacy practices in regular classrooms and addresses literacy practices for learners with disabilities and those experiencing difficulties in literacy learning.