46 resultados para Australian Drinking Water Guidelines
Resumo:
In Australian freshwaters, Anabaena circinalis, Microcystis spp. and Cylindrospermopsis raciborskii are the dominant toxic cyanobacteria. Many of these Surface waters are used as drinking water resources. Therefore, the National Health and Medical Research Council of Australia set a guideline for MC-LR toxicity equivalents of 1.3 mug/l drinking, water. However, due to lack of adequate data, no guideline values for paralytic shellfish poisons (PSPs) (e.g. saxitoxins) or cylindrospermopsin (CYN) have been set. In this spot check. the concentration of microcystins (MCs), PSPs and CYN were determined by ADDA-ELISA, cPPA, HPLC-DAD and/or HPLC-MS/MS, respectively, in two water treatment plants in Queensland/Australia and compared to phytoplankton data collected by Queensland Health, Brisbane. Depending on the predominant cyanobacterial species in a bloom, concentrations of up to 8.0, 17.0 and 1.3 mug/l were found for MCs, PSPs and CYN, respectively. However, only traces (< 1.0 mug/l) of these toxins were detected in final water (final product of the drinking water treatment plant) and tap water (household sample). Despite the low concentrations of toxins detected in drinking water, a further reduction of cyanobacterial toxins is recommended to guarantee public safety. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Concern about the neurotoxicity of lead, particularly in infants and young children, has led to a revision of blood lead levels which are considered to involve an acceptable level of human exposure. Drinking water guidelines have also been reviewed in order to reduce this source of population exposure to lead. In the last 20 years, guidelines have been reduced from 100 to 50 to 10 mu g/litre. Lead in tap water used to be a major public health problem in Glasgow because of the high prevalence of houses with lead service pipes, the low pH of the public water supply and the resulting high levels of lead in water used for public consumption. Following two separate programmes of water treatment, involving the addition of lime and, a decade later, lime supplemented with orthophosphate, it is considered that maximal measures have been taken to reduce lead exposure by chemical treatment of the water supply. Any residual problem of public exposure would require large scale replacement of lead service pipes. In anticipation of the more stringent limits for lead in drinking water, we set out to measure current lead exposure From tap water in the population of Glasgow served by the Loch Katrine water supply. to compare the current situation with 12 years previously and to assess the public health implications of different limits. The study was based on mothers of young children since maternal blood lead concentrations and the domestic water that mothers use to prepare bottle feeds are the principal sources of foetal and infant lead exposure. An estimated 17% of mothers lived in households with tap water lead concentrations of 10 mu g/litre (the WHO guideline) or above in 1993 compared with 49% in 1981. Mean maternal blood lead concentrations fell by 69% in 12 years. For a given water lead concentration, maternal blood lead concentrations were 67% lower. The mean maternal blood lead concentration was 3.7 mu g/litre in the population at large, compared with 3.3 mu g/litre in households with negligible or absent tap water lead. Nevertheless, between 63% and 76% of cases of mothers with blood lead concentrations of 10 mu g/dl or above were attributable to tap water lead. The study found that maternal blood lead concentrations were well within limits currently considered safe for human health. About 15% of infants may be exposed via bottle feeds to tap water lead concentrations that exceed the WHO guideline of 10 mu g/litre. In the context of the health and social problems which affect the well-being and development of infants and children in Glasgow, however, current levels of lend exposure are considered to present a relatively minor health problem. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
A Spongosorites sp. collected during trawling operations off the southern coast of Australia returned the new alkaloid dragmacidin E (3), the structure of which was secured by detailed spectroscopic analysis. Dragmacidin E (3), and its co-metabolite dragmacidin D (1) have been identified as potent inhibitors of serine-threonine protein phosphatases.
Resumo:
The presence of toxic cyanobacteria in drinking water reservoirs renders the need to develop treatment methods for the 'safe' removal of their associated toxins. Chlorine has been shown to successfully remove a range of cyanotoxins including microcystins, cylindrospermopsin and saxitoxins. Each cyanotoxin requires specific treatment parameters, particularly solution pH and free chlorine residual. However, currently there has not been any investigation into the toxicological effect of solutions treated for the removal of these cyanotoxins by chlorine. Using the P53(def) transgenic mouse model mate and female C57BL/6J hybrid mice were used to investigate potential cancer inducing effects from such oral dosing solutions. Both purified cyanotoxins and toxic cell-free extract cyanobacterial solutions were chlorinated and administered over 90 and 170 days (respectively) in drinking water. No increase in cancer was found in any treatment. The parent cyanotoxins, microcystins, cylindrospermopsin and saxitoxins were readily removed by chlorine. There was no significant increase in the disinfection byproducts trihalomethanes or haloacetic acids, levels found were well below guideline values. Histological examination identified no effect of treatment solutions except male mice treated with chlorinated cylindrospermopsin (as a cell free extract). In this instance 40% of males were found to have fatty vacuolation in their livers, cause unknown. It is recommended that further toxicology be undertaken on chlorinated cyanobacterial solutions, particularly for non-genotoxic carcinogenic compounds, for example the Tg. AC transgenic mouse model. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Arsenic is a carcinogen. In Bangladesh, there are over 10 million tube-wells of which about 50% have arsenic concentrations exceeding the WHO recommended guideline value of 10 μg/L for drinking water. This study aimed to evaluate the efficacy of two relatively inexpensive mitigation interventions, three-pitcher filters and dug-wells. A randomised controlled field trial was conducted in Natore. Six Hundred and forty participants, 60 clusters of 47 villages were included in the trial. Two hundred and six participants were selected for the control group, 218 participants for the dug-wells, and 216 participants for the three-pitcher filters. The average arsenic in the drinking water was 128 μg/L in the three-pitcher trial. Twelve months post intervention, about 30% of the filtered water samples were >50 μg/L whereas dug-well water was