21 resultados para Adult Human Hippocampus


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although neural progenitor cells (NPCs) may provide a source of new neurons to alleviate neural trauma, little is known about their electrical properties as they differentiate. We have previously shown that single NPCs from the adult rat hippocampus can be cloned in the presence of heparan sulphate chains purified from the hippocampus, and that these cells can be pushed into a proliferative phenotype with the mitogen FGF2 [Chipperfield, H., Bedi, K.S., Cool, S.M. & Nurcombe, V. (2002) Int. J. Dev. Biol., 46, 661-670]. In this study, the active and passive electrical properties of both undifferentiated and differentiated adult hippocampal NPCs, from 0 to 12 days in vitro as single-cell preparations, were investigated. Sparsely plated, undifferentiated NPCs had a resting membrane potential of approximate to -90 mV and were electrically inexcitable. In > 70%, ATP and benzoylbenzoyl-ATP evoked an inward current and membrane depolarization, whereas acetylcholine, noradrenaline, glutamate and GABA had no detectable effect. In Fura-2-loaded undifferentiated NPCs, ATP and benzoylbenzoyl-ATP evoked a transient increase in the intracellular free Ca2+ concentration, which was dependent on extracellular Ca2+ and was inhibited reversibly by pyridoxalphosphate-6-azophenyl-2'-4'-disulphonic acid (PPADS), a P2 receptor antagonist. After differentiation, NPC-derived neurons became electrically excitable, expressing voltage-dependent TTX-sensitive Na+ channels, low- and high-voltage-activated Ca2+ channels and delayed-rectifier K+ channels. Differentiated cells also possessed functional glutamate, GABA, glycine and purinergic (P2X) receptors. Appearance of voltage-dependent and ligand-gated ion channels appears to be an important early step in the differentiation of NPCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dogma that the genesis of new cells is a negligible event in the adult mammalian brain has long influenced our perception and understanding of the origin and development of CNS tumours. The discovery that new neurons and glia are produced throughout life from neural stem cells provides new possibilities for the candidate cells of origin of CNS neoplasias. The emerging hypothesis is that alterations in the cellular and genetic mechanisms that control adult neurogenesis might contribute to brain tumorigenesis, thereby allowing the identification of new therapeutic strategies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Typically, cognitive abilities of humans have been attributed to their greatly expanded cortical mantle, granular prefrontal cortex (gPFC) in particular. Recently we have demonstrated systematic differences in microstructure of gPFC in different species. Specifically, pyramidal cells in adult human gPFC are considerably more spinous than those in the gPFC of the macaque monkey, which are more spinous than those in the gPFC of marmoset and owl monkeys. As most cortical dendritic spines receive at least one excitatory input, pyramidal cells in these different species putatively receive different numbers of inputs. These differences in the gPFC pyramidal cell phenotype may be of fundamental importance in determining the functional characteristics of prefrontal circuitry and hence the cognitive styles of the different species. However, it remains unknown as to why the gPFC pyramidal cell phenotype differs between species. Differences could be attributed to, among other things, brain size, relative size of gPFC, or the lineage to which the species belong. Here we investigated pyramidal cells in the dorsolateral gPFC of the prosimian galago to extend the basis for comparison. We found these cells to be less spinous than those in human, macaque, and marmoset. (c) 2005 Wiley-Liss, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Acuity for elbow joint position sense (JPS) is reduced when head position is modified. Movement of the head is associated with biomechanical changes in the neck and shoulder musculoskeletal system, which may explain changes in elbow JPS. The present study aimed to determine whether elbow JPS is also influenced by illusory changes in head position. Simultaneous vibration of sternocleidomastoid (SCM) and the contralateral splenius was applied to 14 healthy adult human subjects. Muscle vibration or passive head rotation was introduced between presentation and reproduction of a target elbow position. Ten out of 14 subjects reported illusions consistent with lengthening of the vibrated muscles. In these 10 subjects, absolute error for elbow JPS increased with left SCM/right splenius vibration but not with right SCM/left splenius vibration. Absolute error also increased with right rotation, with a trend for increased error with left rotation. These results demonstrated that both actual and illusory changes in head position are associated with diminished acuity for elbow JPS, suggesting that the influence of head position on upper limb JPS depends, at least partially, on perceived head position.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hookworms are voracious blood-feeders. The cloning and functional expression of an aspartic protease, Na-APR-2, from the human hookworm Necator americanus are described here. Na-APR-2 is more similar to a family of nematode-specific, aspartic proteases than it is to cathepsin D or pepsin, and the term nemepsins for members of this family of nematode-specific hydrolases is proposed. Na-apr-2 mRNA was detected in blood-feeding, developmental stages only of N. americanus, and the protease was expressed in the intestinal lumen, amphids, and excretory glands. Recombinant Na-APR-2 cleaved human hemoglobin (Hb) and serum proteins almost twice as efficiently as the orthologous substrates from the nonpermissive dog host. Moreover, only 25% of the Na-APR-2 cleavage sites within human Hb were shared with those generated by the related N. americanus cathepsin D, Na-APR-1. Antiserum against Na-APR-2 inhibited migration of 50% of third-stage N. americanus larvae through skin, which suggests that aspartic proteases might be effective vaccines against human hookworm disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Serotonin (5-hydroxytryptamine, 5-HT) increases contractile force and elicits arrhythmias through 5-HT4 receptors in porcine and human atrium, but its ventricular effects are unknown. We now report functional 5-HT4 receptors in porcine and human ventricle. 5-HT4 mRNA levels were determined in porcine and human ventricles and contractility studied in ventricular trabeculae. Cyclic AMP-dependent protein kinase (PKA) activity was measured in porcine ventricle. Porcine and human ventricles expressed 5-HT4 receptor mRNA. Ventricular 5-HT4(b) mRNA was increased by four times in 20 failing human hearts compared with five donor hearts. 5-HT increased contractile force maximally by 16% (EC50=890 nM) and PKA activity by 20% of the effects of (-)-isoproterenol (200 muM) in ventricular trabeculae from new-born piglets in the presence of the phosphodiesterase-inhibitor 3-isobutyl-1-methylxanthine. In ventricular trabeculae from adult pigs (3-isobutyl-1-methylxanthine present) 5-HT increased force by 32% (EC50=60 nM) and PKA activity by 39% of (-)-iso-proterenol. In right and left ventricular trabeculae from failing hearts, exposed to modified Krebs solution, 5-HT produced variable increases in contractile force in right ventricular trabeculae from 4 out of 6 hearts and in left ventricular trabeculae from 3 out of 3 hearts- range 1-39% of (-)-isoproterenol, average 8%. In 11 left ventricular trabeculae from the failing hearts of four beta-blocker-treated patients, pre-exposed to a relaxant solution with 0.5 mM Ca2+ and 1.2 mM Mg2+ followed by a switch to 2.5 mM Ca2+ and 1 mM Mg2+, 5-HT (1-100 muM, 3-isobutyl-1-melhylxanthine present) consistently increased contractile force and hastened relaxation by 46% and 25% of (-)-isoproterenol respectively. 5-HT caused arrhythmias in three trabeculae from 3 out of I I patients. In the absence of phosphodiesterase inhibitor, 5-HT increased force in two trabeculae, but not in another six trabeculae from 4 patients. All 5-HT responses were blocked by 5-HT4 receptor antagonists. We conclude that phosphodiesterase inhibition uncovers functional ventricular 5-HT4 receptors, coupled to a PKA pathway, through which 5-HT enhances contractility, hastens relaxation and can potentially cause arrhythmias.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a knowable object, the human body is highly complex. Evidence from several converging lines of research, including psychological studies, neuroimaging and clinical neuropsychology, indicates that human body knowledge is widely distributed in the adult brain, and is instantiated in at least three partially independent levels of representation. Sensori-motor body knowledge is responsible for on-line control and movement of one's own body and may also contribute to the perception of others' moving bodies; visuo-spatial body knowledge specifies detailed structural descriptions of the spatial attributes of the human body; and lexical-semantic body knowledge contains language-based knowledge about the human body. In the first chapter of this Monograph, we outline the evidence for these three hypothesized levels of human body knowledge, then review relevant literature on infants' and young children's human body knowledge in terms of the three-level framework. In Chapters II and III, we report two complimentary series of studies that specifically investigate the emergence of visuospatial body knowledge in infancy. Our technique is to compare infants' responses to typical and scrambled human bodies, in order to evaluate when and how infants acquire knowledge about the canonical spatial layout of the human body. Data from a series of visual habituation studies indicate that infants first discriminate scrambled from typical human body pictures at 15 to 18 months of age. Data from object examination studies similarly indicate that infants are sensitive to violations of three-dimensional human body stimuli starting at 15-18 months of age. The overall pattern of data supports several conclusions about the early development of human body knowledge: (a) detailed visuo-spatial knowledge about the human body is first evident in the second year of life, (b) visuo-spatial knowledge of human faces and human bodies are at least partially independent in infancy and (c) infants' initial visuo-spatial human body representations appear to be highly schematic, becoming more detailed and specific with development. In the final chapter, we explore these conclusions and discuss how levels of body knowledge may interact in early development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adult neural progenitors have been isolated from diverse regions of the CNS using methods which primarily involve the enzymatic digestion of tissue pieces; however, interpretation of these experiments can be complicated by the loss of anatomical resolution during the isolation procedures. We have developed a novel, explant-based technique for the isolation of neural progenitors, Living CNS regions were sectioned using a vibratome and small, well-defined discs of tissue punched out. When Cultured. explants from the cortex, hippocampus, cerebellum, spinal cord, hypothalamus, and caudate nucleus all robustly gave rise to proliferating progenitors. These progenitors were similar in behaviour and morphology to previously characterised multipotent hippocampal progenitor lines. Clones from all regions examined could proliferate from single cells and give rise to secondary neurospheres at a low but consistent frequency. Immunostaining demonstrated that clonal cortical progenitors were able to differentiate into both neurons and glial cells, indicating their multipotent characteristics. These results demonstrate it is possible to isolate anatomically resolved adult neural progenitors from small amounts of tissue throughout the CNS, thus, providing a tool for investigating the frequency and characteristics of progenitor cells from different regions. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human neuronal protein 22 (hNP22) is a novel neuron-specific protein featuring numerous motifs previously described in cytoskeleton-associating and signaling proteins. Because previous studies have supported abnormalities in neuronal cytoarchitecture and/or development in the schizophrenia brain, we examined the expression of hNP22 in the anterior cingulate cortex, the hippocampus and the prefrontal cortex of schizophrenic and normal control postmortem brains using high-sensitive immunohistochemistry. Seven schizophrenic and seven age- and sex-matched control brains were examined. The ratio of hNP22-immunopositive cells/total cells was significantly reduced in layer V (p = .020) and layer VI (p = .022) of the anterior cingulate cortex of schizophrenic brain compared with controls. In contrast, there were no significant changes observed in the hippocampus and the prefrontal cortex. These results suggest that altered expression of hNP22 may be associated with modifications in neuronal cytoarchitecture leading to dysregulation of neural signal transduction in the anterior cingulate cortex of the schizophrenia brain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this investigation was to characterize the proliferative precursor cells in the adult mouse hippocampal region. Given that a very large number of new hippocampal cells are generated over the lifetime of an animal, it is predicted that a neural stem cell is ultimately responsible for maintaining this genesis. Although it is generally accepted that a proliferative precursor resides within the hippocampus, contradictory reports exist regarding the classification of this cell. Is it a true stem cell or a more limited progenitor? Using a strict functional definition of a neural stem cell and a number of in vitro assays, we report that the resident hippocampal precursor is a progenitor capable of proliferation and multipotential differentiation but is unable to self-renew and thus proliferate indefinitely. Furthermore, the mitogen FGF-2 stimulates proliferation of these cells to a greater extent than epidermal growth factor ( EGF). In addition, we found that BDNF was essential for the production of neurons from the hippocampal progenitor cells, being required during proliferation to trigger neuronal fate. In contrast, a bona fide neural stem cell was identified in the lateral wall of the lateral ventricle surrounding the hippocampus. Interestingly, EGF proved to be the stronger mitogenic factor for this cell, which was clearly a different precursor from the resident hippocampal progenitor. These results suggest that the stem cell ultimately responsible for adult hippocampal neurogenesis resides outside the hippocampus, producing progenitor cells that migrate into the neurogenic zones and proliferate to produce new neurons and glia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A field-applicable assay for testing anthelmintic sensitivity is required to monitor for anthelmintic resistance. We undertook a study to evaluate the ability of three in vitro assay systems to define drug sensitivity of clinical isolates of the human hookworm parasite Necator americanus recovered from children resident in a village in Madang Province, Papua New Guinea. The assays entailed observation of drug effects on egg hatch (EHA), larval development (LDA), and motility of infective stage larvae (LMA). The egg hatch assay proved the best method for assessing the response to benzimidazole anthelmintics, while the larval motility assay was suitable for assessing the response to ivermectin. The performance of the larval development assay was unsatisfactory on account of interference caused by contaminating bacteria. A simple protocol was developed whereby stool samples were subdivided and used for immediate egg recovery, as well as for faecal culture, in order to provide eggs and infective larvae, respectively, for use in the egg hatch assay and larval motility assay systems. While the assays proved effective in quantifying drug sensitivity in larvae of the drug-susceptible hookworms examined in this study, their ability to indicate drug resistance in larval or adult hookworms remains to be determined. (c) 2005 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sulfonation is an important reaction in the metabolism of numerous xenobiotics, drugs, and endogenous compounds. A supergene family of enzymes called sulfotransferases (SULTs) catalyze this reaction. In most cases, the addition of a sulfonate moiety to a compound increases its water solubility and decreases its biological activity. However, many of these enzymes are also capable of bioactivating procarcinogens to reactive electrophiles. In humans three SULT families, SULT1, SULT2, and SULT4, have been identified that contain at least thirteen distinct members. SULTs have a wide tissue distribution and act as a major detoxification enzyme system in adult and the developing human fetus. Nine crystal structures of human cytosolic SULTs have now been determined, and together with site-directed mutagenesis experiments and molecular modeling, we are now beginning to understand the factors that govern distinct but overlapping substrate specificities. These studies have also provided insight into the enzyme kinetics and inhibition characteristics of these enzymes. The regulation of human SULTs remains as one of the least explored areas of research in the field, though there have been some recent advances on the molecular transcription mechanism controlling the individual SULT promoters. Interindividual variation in sulfonation capacity may be important in determining an individual's response to xenobiotics, and recent studies have begun to suggest roles for SULT polymorphism in disease susceptibility. This review aims to provide a summary of our present understanding of the function of human cytosolic sulfotransferases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cultured human melanocytes differ tremendously in visual pigmentation, and recapitulate the pigmentary phenotype of the donor's skin. This diversity arises from variation in type as well as quantity of melanin produced. Here, we measured contents of eumelanin (EM) and pheomelanin (PM) in 60 primary human melanocyte cultures (51 neonatal and nine adults), and correlated some of these values with the respective activity and protein levels of tyrosinase, and the melanocortin-1 receptor (MC1R) genotype. Melanocytes were classified into four phenotypes (L, L+, D, D+) as depicted by visual pigmentation using light microscopy, and by the pigmentary phenotype of the donor's skin. There were large differences in total melanin (TM) and EM, which increased progressively for L, L+, D and D+ melanocytes. TM content, the sum of EM and PM, showed a good correlation with TM measured spectrophotometrically, and with the activity and protein levels of tyrosinase. Log EM/PM ratio did not correlate with MC1R genotype. We conclude that: (i) EM consistently correlates with the visual phenotype; (ii) lighter melanocytes tend to be more pheomelanic in composition than darker melanocytes; (iii) in adult melanocyte cultures, EM correlates with the ethnic background of the donors (African-American > Indian > Caucasian); and (iv) MC1R loss-of-function mutations do not necessarily alter the phenotype of cultured melanocytes.