127 resultados para 110602 Exercise Physiology
Resumo:
In the present study, we tested the hypothesis that walking intolerance in intermittent claudication (IC) is related to both slowed whole body oxygen uptake (Vo(2)) kinetics and altered activity of the active fraction of the pyruvate dehydrogenase complex (PDCa) in skeletal muscle. Ten patients with IC and peripheral arterial disease [ankle/brachial index (ABI) = 0.73 +/- 0.13] and eight healthy controls (ABI = 1. 17 +/- 0.13) completed three maximal walking tests. From these tests, averaged estimates of walking time, peak Vo(2) and the time constant of Vo(2) (tau) during submaximal walking were obtained. A muscle sample was taken from the gastrocnemius medialis muscle at rest and analysed for PDCa and several other biochemical variables. Walking time and peak Vo(2) were approx. 50 % lower in patients with IC than controls, and tau was 2-fold higher (P < 0.05). r was significantly correlated with walking time (r = -0.72) and peak Vo(2) (r = -0.66) in patients with IC, but not in controls. PDCa was not significantly lower in patients with IC than controls; however, PDCa tended to be correlated with tau (r = -0.56, P = 0.09) in patients with IC, but not in controls (r = -0.14). A similar correlation was observed between resting ABI and tau (r = -0.63, P = 0.05) in patients with IC. These data suggest that the impaired Vo(2) kinetics contributes to walking intolerance in IC and that, within a group of patients with IC, differences in Vo(2) kinetics might be partly linked to differences in muscle carbohydrate oxidation.
Resumo:
The aim of the present study was to examine the relationship between the performance heart rate during an ultra-endurance triathlon and the heart rate corresponding to several demarcation points measured during laboratory-based progressive cycle ergometry and treadmill running. Less than one month before an ultra-endurance triathlon, 21 well-trained ultra-endurance triathletes (mean +/- s: age 35 +/- 6 years, height 1.77 +/- 0.05 in, mass 74.0 +/- 6.9 kg, (V) over dot O-2peak = 4.75 +/- 0.42 1 center dot min(-1)) performed progressive exercise tests of cycle ergometry and treadmill running for the determination of peak oxygen uptake ((V) over do O-2peak), heart rate corresponding to the first and second ventilatory thresholds, as well as the heart rate deflection point. Portable telemetry units recorded heart rate at 60 s increments throughout the ultra-endurance triathlon. Heart rate during the cycle and run phases of the ultra-endurance triathlon (148 +/- 9 and 143 +/- 13 beats center dot min(-1) respectively) were significantly (P < 0.05) less than the second ventilatory thresholds (160 +/- 13 and 165 +/- 14 beats center dot min(-1) respectively) and heart rate deflection points (170 +/- 13 and 179 +/- 9 beats center dot min(-1) respectively). However, mean heart rate during the cycle and run phases of the ultra-endurance triathlon were significantly related to (r = 0.76 and 0.66; P < 0.01), and not significantly different from, the first ventilatory thresholds (146 +/- 12 and 148 +/- 15 beats center dot min(-1) respectively). Furthermore, the difference between heart rate during the cycle phase of the ultra-endurance triathlon and heart rate at the first ventilatory threshold was related to marathon run time (r = 0.61; P < 0.01) and overall ultra-endurance triathlon time (r = 0.45; P < 0.05). The results suggest that triathletes perform the cycle and run phases of the ultra-endurance triathlon at an exercise intensity near their first ventilatory threshold
Resumo:
The nongenomic effects of aldosterone in disease states associated with endothelial dysfunction may differ from those in healthy subjects. The effects of locally infused aldosterone on the forearm blood flow and volume were studied in optimally treated patients with chronic heart failure (CHF). At baseline and after incremental intrabrachial aldosterone, forearm blood flow was assessed using conventional strain gouge plethysmography, and forearm venous volume was assessed by radionuclide plethysmography. Constriction of the resistance vasculature of the forearm without significant effect on forearm venous capacitance was demonstrated in response to aldosterone in patients treated for CHF. (C) 2005 by Excerpta Medica Inc.
Resumo:
OBJECTIVES: To examine the association between physical activity and inflammatory markers, with consideration for body fatness and antioxidant use. DESIGN: Cross-sectional study, using baseline data from the Health, Aging and Body Composition Study. SETTING: Metropolitan areas surrounding Pittsburgh, Pennsylvania, and Memphis, Tennessee. PARTICIPANTS: Black and white, well-functioning men and women (N=3,075), aged 70 to 79. MEASUREMENTS: Interviewer-administered questionnaires of previous-week household, walking, exercise, and occupational/volunteer physical activities. Analysis of covariance was used to examine the association between activity level and serum C-reactive protein (CRP), interleukin-6 (IL-6), and plasma tumor necrosis factor alpha (TNFalpha) with covariate adjustment. Antioxidant supplement use (multivitamin, vitamins E or C, beta carotene) was evaluated as an effect modifier of the association. RESULTS: Higher levels of exercise were associated with lower levels of CRP (P
Resumo:
Regular aerobic exercise is recommended by physicians to improve health and longevity. However, individuals exercising in urban regions are often in contact with air pollution, which includes particles and gases associated with respiratory disease and cancer. We describe the recent evidence on the cardiovascular effects of air pollution, and the implications of exercising in polluted environments, with a view to informing clinicians and other health professionals. There is now strong evidence that fine and ultra fine particulate matter present in air pollution increases cardiovascular morbidity and mortality. The main mechanisms of disease appear to be related to an increase in the pathogenic processes associated with atherosclerosis. People exercising in environments pervaded by air contaminants are probably at increased risk, due to an exercise-induced amplification in respiratory uptake, lung deposition and toxicity of inhaled pollutants. We make evidence-based recommendations for minimizing exposure to air-borne toxins while exercising, and suggest that this advice be passed on to patients where appropriate.
Resumo:
Aim. Numerous studies report an association between muscle strength and bone mineral density (BMD) in young and older women. However, the participants are generally non-athletes, thus it is unclear if the relationship varies by exercise status. Therefore, the purpose was to examine the relationships between BMD and muscle strength in young women with markedly different exercise levels. Methods. Experimental design: cross-sectional. Setting: a University research laboratory. Participants: 18 collegiate gymnasts and 22 age- and weight-matched recreationally active control women. Measures: lumbar spine, femoral neck, arm, leg and whole body BMD (g/cm(2)) were assessed by dual X-ray absorptiometry. In addition, lumbar spine and femoral neck bone mineral apparent density (BMAD, g/cm(3)) was calculated. Handgrip strength and knee extensor and flexor torque (60degrees/s) were determined by dynamometry, and bench press and leg press strength (1-RM) using isotonic equipment. Results. BMD at all sites and bench press, leg press and knee flexor strength were greater in gymnasts than controls (p
Resumo:
In order to examine the influence of sprint training on metabolism and exercise performance during sprint exercise, 16 recreationally-active, untrained, men (TO2peak= 3.8+/-0.1 1.min(-1)) were randomly assigned to either a training (n=8) or control group (n=8). Each subject performed a 30-sec cycle sprint and a test to measure VO2peak before and after eight weeks of sprint training. The training group completed a series of sprints three times per week which progressed from three 30-sec cycle sprints in weeks 1 and 2, to six 30-sec sprints in weeks 7 and 8. Three mins of passive recovery separated each sprint throughout the training period. Muscle samples were obtained at rest and immediately following the pre- and post-training sprints and analysed for high energy phosphagens, glycogen and lactate; the activities of both phosphofructokinase (PFK) and citrate synthase (CS) were also measured and muscle fibre types were quantified, Training resulted in a 7.1% increase in mean power output (p
Resumo:
Peripheral arterial disease (PAD) is an obstructive condition where the flow of blood through peripheral arteries is impeded. During periods of increased oxygen demand (e.g. during exercise), peripheral limb ischaemia occurs, resulting in the sensation of muscle pain termed 'claudication'. As a result of claudication, subjects' ability to exercise is greatly reduced affecting their quality of life. Although many treatment options for patients with PAD exist, exercise training is an effective and low-cost means of improving functional ability and quality of life. Currently, there are limited specific recommendations to assist the exercise prescription and programming of these individuals. This review summarises data from 28 exercise training studies conducted in patients with PAD and formulates recommendations based on their results. Exercise training for patients with PAD should involve three training sessions per week comprising 45 minutes of intermittent treadmill walking in a supervised environment for a time period of 20 weeks or more. Encouragement and direction is given to further research aimed at investigating the effectiveness of training programmes in these patients.
Resumo:
Objective-Although physical activity is beneficial to health, people who exercise at high intensities throughout their lifetime may have increased cardiovascular risk. Aerobic exercise increases oxidative stress and may contribute to atherogenesis by augmented oxidation of plasma lipoproteins. The aim of this study was to examine the relationship between aerobic power and markers of oxidative stress, including the susceptibility of plasma to oxidation. Methods and results-Aerobic power was measured in 24 healthy men aged 29 9 years (mean +/- SD). Plasma was analysed from subjects of high aerobic power (HAP; VO(2)max, 64.6 +/- 6.1 ml/kg/min) and lower aerobic power (LAP;VO(2)max, 45.1 +/- 6.3 ml/kg/min) for total antioxidant capacity (TAC), malondialdehyde (MDA) and susceptibility to oxidation. Three measures were used to quantify plasma oxidizability: (1) lag time to conjugated diene formation (lag time); (2) change in absorbance at 234 nm and; (3) slope of the oxidation curve during propagation (slope). The HAP subjects had significantly lowerTAC (1.38 +/- 0.04 versus 1.42 +/- 0.06 TEAC units; P < 0.05), significantly higher change in absorbance (1.55 +/- 0.21 versus 1.36 +/- 0.17 arbitrary units; P < 0.05), but no difference in MDA (P = 0.6), compared to LAP subjects. There was a significant inverse association between TAC and slope (r = -0.49; P < 0.05). Lipoprotein profiles and daily intake of nutrients did not differ between the groups. Conclusions-These findings suggest that people with high aerobic power, due to extreme endurance exercise, have plasma with decreased antioxidant capacity and higher susceptibility to oxidation, which may increase their cardiovascular risk.
Resumo:
We sought to determine if the velocity of an acute bout of eccentric contractions influenced the duration and severity of several common indirect markers of muscle damage. Subjects performed 36 maximal fast (FST, n=8: 3.14 rad center dot s(-1)) or slow (SLW, n=7: 0.52 rad center dot s(-1)) velocity isokinetic eccentric contractions with the elbow flexors of the non-dominant arm. Muscle soreness, limb girth, plasma creatine kinase (CK) activity, isometric torque and concentric and eccentric torque at 0.52 and 3.14 rad center dot s(-1) were assessed prior to and for several days following the eccentric bout. Peak plasma CK activity was similar in SLW (4030 +/- 1029 U center dot l(-1)) and FST (5864 +/- 2664 U center dot l(-1)) groups, (p > 0.05). Both groups experienced similar decrement in all strength variables during the 48 hr following the eccentric bout. However, recovery occurred more rapidly in the FST group during eccentric (0.52 and 3.14 rad center dot s(-1)) and concentric (3.14 rad center dot s(-1)) post-testing. The severity of muscle soreness was similar in both groups. However, the FST group experienced peak muscle soreness 48 hr later than the SLW group (24 hr vs. 72 hr). The SLW group experienced a greater increase in upper arm girth than the FST group 20 min, 24 hr and 96 hr following the eccentric exercise bout. The contraction velocity of an acute bout of eccentric exercise differentially influences the magnitude and time course of several indirect markers of muscle damage.
Resumo:
Regular exercise is known to be effective in the prevention and treatment of cardiovascular disease. Among the cardioprotectant mechanisms influenced by exercise, the endothelium is becoming recognised as a major target. Preservation of endothelial cell structure is vital for frictionless blood flow, prevention of macrophage and lipid infiltration and, ultimately, optimal vascular function. Exercise causes various kinds of mechanical, chemical and thermal stresses, and repeated exposure to these stresses may precondition the endothelial cell to future stresses through a number of different mechanisms. This review discusses stress-induced changes in endothelial cell morphology, biochemistry and components of platelet activation and cell adhesion that impact on endothelial cell structure. An enhanced understanding of the effects of exercise on the endothelial cell will assist in directing future research into the prevention of cardiovascular disease. (c) 2004 Elsevier Ireland Ltd. All rights reserved.