1 resultado para real-life research
em Université Laval Mémoires et thèses électroniques
Resumo:
Dans cette thèse on s’intéresse à la modélisation de la dépendance entre les risques en assurance non-vie, plus particulièrement dans le cadre des méthodes de provisionnement et en tarification. On expose le contexte actuel et les enjeux liés à la modélisation de la dépendance et l’importance d’une telle approche avec l’avènement des nouvelles normes et exigences des organismes réglementaires quant à la solvabilité des compagnies d’assurances générales. Récemment, Shi et Frees (2011) suggère d’incorporer la dépendance entre deux lignes d’affaires à travers une copule bivariée qui capture la dépendance entre deux cellules équivalentes de deux triangles de développement. Nous proposons deux approches différentes pour généraliser ce modèle. La première est basée sur les copules archimédiennes hiérarchiques, et la deuxième sur les effets aléatoires et la famille de distributions bivariées Sarmanov. Nous nous intéressons dans un premier temps, au Chapitre 2, à un modèle utilisant la classe des copules archimédiennes hiérarchiques, plus précisément la famille des copules partiellement imbriquées, afin d’inclure la dépendance à l’intérieur et entre deux lignes d’affaires à travers les effets calendaires. Par la suite, on considère un modèle alternatif, issu d’une autre classe de la famille des copules archimédiennes hiérarchiques, celle des copules totalement imbriquées, afin de modéliser la dépendance entre plus de deux lignes d’affaires. Une approche avec agrégation des risques basée sur un modèle formé d’une arborescence de copules bivariées y est également explorée. Une particularité importante de l’approche décrite au Chapitre 3 est que l’inférence au niveau de la dépendance se fait à travers les rangs des résidus, afin de pallier un éventuel risque de mauvaise spécification des lois marginales et de la copule régissant la dépendance. Comme deuxième approche, on s’intéresse également à la modélisation de la dépendance à travers des effets aléatoires. Pour ce faire, on considère la famille de distributions bivariées Sarmanov qui permet une modélisation flexible à l’intérieur et entre les lignes d’affaires, à travers les effets d’années de calendrier, années d’accident et périodes de développement. Des expressions fermées de la distribution jointe, ainsi qu’une illustration empirique avec des triangles de développement sont présentées au Chapitre 4. Aussi, nous proposons un modèle avec effets aléatoires dynamiques, où l’on donne plus de poids aux années les plus récentes, et utilisons l’information de la ligne corrélée afin d’effectuer une meilleure prédiction du risque. Cette dernière approche sera étudiée au Chapitre 5, à travers une application numérique sur les nombres de réclamations, illustrant l’utilité d’un tel modèle dans le cadre de la tarification. On conclut cette thèse par un rappel sur les contributions scientifiques de cette thèse, tout en proposant des angles d’ouvertures et des possibilités d’extension de ces travaux.