2 resultados para pacs: metropolian area networks
em Université Laval Mémoires et thèses électroniques
Resumo:
Le rapide déclin actuel de la biodiversité est inquiétant et les activités humaines en sont la cause directe. De nombreuses aires protégées ont été mises en place pour contrer cette perte de biodiversité. Afin de maximiser leur efficacité, l’amélioration de la connectivité fonctionnelle entre elles est requise. Les changements climatiques perturbent actuellement les conditions environnementales de façon globale. C’est une menace pour la biodiversité qui n’a pas souvent été intégrée lors de la mise en place des aires protégées, jusqu’à récemment. Le mouvement des espèces, et donc la connectivité fonctionnelle du paysage, est impacté par les changements climatiques et des études ont montré qu’améliorer la connectivité fonctionnelle entre les aires protégées aiderait les espèces à faire face aux impacts des changements climatiques. Ma thèse présente une méthode pour concevoir des réseaux d’aires protégées tout en tenant compte des changements climatiques et de la connectivité fonctionnelle. Mon aire d’étude est la région de la Gaspésie au Québec (Canada). La population en voie de disparition de caribou de la Gaspésie-Atlantique (Rangifer tarandus caribou) a été utilisée comme espèce focale pour définir la connectivité fonctionnelle. Cette petite population subit un déclin continu dû à la prédation et la modification de son habitat, et les changements climatiques pourraient devenir une menace supplémentaire. J’ai d’abord construit un modèle individu-centré spatialement explicite pour expliquer et simuler le mouvement du caribou. J’ai utilisé les données VHF éparses de la population de caribou et une stratégie de modélisation patron-orienté pour paramétrer et sélectionner la meilleure hypothèse de mouvement. Mon meilleur modèle a reproduit la plupart des patrons de mouvement définis avec les données observées. Ce modèle fournit une meilleure compréhension des moteurs du mouvement du caribou de la Gaspésie-Atlantique, ainsi qu’une estimation spatiale de son utilisation du paysage dans la région. J’ai conclu que les données éparses étaient suffisantes pour ajuster un modèle individu-centré lorsqu’utilisé avec une modélisation patron-orienté. Ensuite, j’ai estimé l’impact des changements climatiques et de différentes actions de conservation sur le potentiel de mouvement du caribou. J’ai utilisé le modèle individu-centré pour simuler le mouvement du caribou dans des paysages hypothétiques représentant différents scénarios de changements climatiques et d’actions de conservation. Les actions de conservation représentaient la mise en place de nouvelles aires protégées en Gaspésie, comme définies par le scénario proposé par le gouvernement du Québec, ainsi que la restauration de routes secondaires à l’intérieur des aires protégées. Les impacts des changements climatiques sur la végétation, comme définis dans mes scénarios, ont réduit le potentiel de mouvement du caribou. La restauration des routes était capable d’atténuer ces effets négatifs, contrairement à la mise en place des nouvelles aires protégées. Enfin, j’ai présenté une méthode pour concevoir des réseaux d’aires protégées efficaces et j’ai proposé des nouvelles aires protégées à mettre en place en Gaspésie afin de protéger la biodiversité sur le long terme. J’ai créé de nombreux scénarios de réseaux d’aires protégées en étendant le réseau actuel pour protéger 12% du territoire. J’ai calculé la représentativité écologique et deux mesures de connectivité fonctionnelle sur le long terme pour chaque réseau. Les mesures de connectivité fonctionnelle représentaient l’accès général aux aires protégées pour le caribou de la Gaspésie-Atlantique ainsi que son potentiel de mouvement à l’intérieur. J’ai utilisé les estimations de potentiel de mouvement pour la période de temps actuelle ainsi que pour le futur sous différents scénarios de changements climatiques pour représenter la connectivité fonctionnelle sur le long terme. Le réseau d’aires protégées que j’ai proposé était le scénario qui maximisait le compromis entre les trois caractéristiques de réseau calculées. Dans cette thèse, j’ai expliqué et prédit le mouvement du caribou de la Gaspésie-Atlantique sous différentes conditions environnementales, notamment des paysages impactés par les changements climatiques. Ces résultats m’ont aidée à définir un réseau d’aires protégées à mettre en place en Gaspésie pour protéger le caribou au cours du temps. Je crois que cette thèse apporte de nouvelles connaissances sur le comportement de mouvement du caribou de la Gaspésie-Atlantique, ainsi que sur les actions de conservation qui peuvent être prises en Gaspésie afin d’améliorer la protection du caribou et de celle d’autres espèces. Je crois que la méthode présentée peut être applicable à d’autres écosystèmes aux caractéristiques et besoins similaires.
Resumo:
Les réseaux de capteurs sont formés d’un ensemble de dispositifs capables de prendre individuellement des mesures d’un environnement particulier et d’échanger de l’information afin d’obtenir une représentation de haut niveau sur les activités en cours dans la zone d’intérêt. Une telle détection distribuée, avec de nombreux appareils situés à proximité des phénomènes d’intérêt, est pertinente dans des domaines tels que la surveillance, l’agriculture, l’observation environnementale, la surveillance industrielle, etc. Nous proposons dans cette thèse plusieurs approches pour effectuer l’optimisation des opérations spatio-temporelles de ces dispositifs, en déterminant où les placer dans l’environnement et comment les contrôler au fil du temps afin de détecter les cibles mobiles d’intérêt. La première nouveauté consiste en un modèle de détection réaliste représentant la couverture d’un réseau de capteurs dans son environnement. Nous proposons pour cela un modèle 3D probabiliste de la capacité de détection d’un capteur sur ses abords. Ce modèle inègre également de l’information sur l’environnement grâce à l’évaluation de la visibilité selon le champ de vision. À partir de ce modèle de détection, l’optimisation spatiale est effectuée par la recherche du meilleur emplacement et l’orientation de chaque capteur du réseau. Pour ce faire, nous proposons un nouvel algorithme basé sur la descente du gradient qui a été favorablement comparée avec d’autres méthodes génériques d’optimisation «boites noires» sous l’aspect de la couverture du terrain, tout en étant plus efficace en terme de calculs. Une fois que les capteurs placés dans l’environnement, l’optimisation temporelle consiste à bien couvrir un groupe de cibles mobiles dans l’environnement. D’abord, on effectue la prédiction de la position future des cibles mobiles détectées par les capteurs. La prédiction se fait soit à l’aide de l’historique des autres cibles qui ont traversé le même environnement (prédiction à long terme), ou seulement en utilisant les déplacements précédents de la même cible (prédiction à court terme). Nous proposons de nouveaux algorithmes dans chaque catégorie qui performent mieux ou produits des résultats comparables par rapport aux méthodes existantes. Une fois que les futurs emplacements de cibles sont prédits, les paramètres des capteurs sont optimisés afin que les cibles soient correctement couvertes pendant un certain temps, selon les prédictions. À cet effet, nous proposons une méthode heuristique pour faire un contrôle de capteurs, qui se base sur les prévisions probabilistes de trajectoire des cibles et également sur la couverture probabiliste des capteurs des cibles. Et pour terminer, les méthodes d’optimisation spatiales et temporelles proposées ont été intégrées et appliquées avec succès, ce qui démontre une approche complète et efficace pour l’optimisation spatio-temporelle des réseaux de capteurs.