3 resultados para optimization algorithm

em Université Laval Mémoires et thèses électroniques


Relevância:

60.00% 60.00%

Publicador:

Resumo:

La Formule SAE (Society of Automotive Engineers) est une compétition étudiante consistant en la conception et la fabrication d’une voiture de course monoplace. De nombreux événements sont organisés à chaque année au cours desquels plusieurs universités rivalisent entre elles lors d’épreuves dynamiques et statiques. Celles-ci comprennent l’évaluation de la conception, l’évaluation des coûts de fabrication, l’accélération de la voiture, etc. Avec plus de 500 universités participantes et des événements annuels sur tous les continents, il s’agit de la plus importante compétition d’ingénierie étudiante au monde. L’équipe ULaval Racing a participé pendant plus de 20 ans aux compétitions annuelles réservées aux voitures à combustion. Afin de s’adapter à l’électrification des transports et aux nouvelles compétitions destinées aux voitures électriques, l’équipe a conçu et fabriqué une chaîne de traction électrique haute performance destinée à leur voiture 2015. L’approche traditionnelle employée pour concevoir une motorisation électrique consiste à imposer les performances désirées. Ces critères comprennent l’inclinaison maximale que la voiture doit pouvoir gravir, l’autonomie désirée ainsi qu’un profil de vitesse en fonction du temps, ou tout simplement un cycle routier. Cette approche n’est malheureusement pas appropriée pour la conception d’une traction électrique pour une voiture de type Formule SAE. Ce véhicule n’étant pas destiné à la conduite urbaine ou à la conduite sur autoroute, les cycles routiers existants ne sont pas représentatifs des conditions d’opération du bolide à concevoir. Ainsi, la réalisation de ce projet a nécessité l’identification du cycle d’opération routier sur lequel le véhicule doit opérer. Il sert de point de départ à la conception de la chaîne de traction composée des moteurs, de la batterie ainsi que des onduleurs de tension. L’utilisation d’une méthode de dimensionnement du système basée sur un algorithme d’optimisation génétique, suivie d’une optimisation locale couplée à une analyse par éléments-finis a permis l’obtention d’une solution optimale pour les circuits de type Formule SAE. La chaîne de traction conçue a été fabriquée et intégrée dans un prototype de voiture de l’équipe ULaval Racing lors de la saison 2015 afin de participer à diverses compétitions de voitures électriques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les réseaux de capteurs sont formés d’un ensemble de dispositifs capables de prendre individuellement des mesures d’un environnement particulier et d’échanger de l’information afin d’obtenir une représentation de haut niveau sur les activités en cours dans la zone d’intérêt. Une telle détection distribuée, avec de nombreux appareils situés à proximité des phénomènes d’intérêt, est pertinente dans des domaines tels que la surveillance, l’agriculture, l’observation environnementale, la surveillance industrielle, etc. Nous proposons dans cette thèse plusieurs approches pour effectuer l’optimisation des opérations spatio-temporelles de ces dispositifs, en déterminant où les placer dans l’environnement et comment les contrôler au fil du temps afin de détecter les cibles mobiles d’intérêt. La première nouveauté consiste en un modèle de détection réaliste représentant la couverture d’un réseau de capteurs dans son environnement. Nous proposons pour cela un modèle 3D probabiliste de la capacité de détection d’un capteur sur ses abords. Ce modèle inègre également de l’information sur l’environnement grâce à l’évaluation de la visibilité selon le champ de vision. À partir de ce modèle de détection, l’optimisation spatiale est effectuée par la recherche du meilleur emplacement et l’orientation de chaque capteur du réseau. Pour ce faire, nous proposons un nouvel algorithme basé sur la descente du gradient qui a été favorablement comparée avec d’autres méthodes génériques d’optimisation «boites noires» sous l’aspect de la couverture du terrain, tout en étant plus efficace en terme de calculs. Une fois que les capteurs placés dans l’environnement, l’optimisation temporelle consiste à bien couvrir un groupe de cibles mobiles dans l’environnement. D’abord, on effectue la prédiction de la position future des cibles mobiles détectées par les capteurs. La prédiction se fait soit à l’aide de l’historique des autres cibles qui ont traversé le même environnement (prédiction à long terme), ou seulement en utilisant les déplacements précédents de la même cible (prédiction à court terme). Nous proposons de nouveaux algorithmes dans chaque catégorie qui performent mieux ou produits des résultats comparables par rapport aux méthodes existantes. Une fois que les futurs emplacements de cibles sont prédits, les paramètres des capteurs sont optimisés afin que les cibles soient correctement couvertes pendant un certain temps, selon les prédictions. À cet effet, nous proposons une méthode heuristique pour faire un contrôle de capteurs, qui se base sur les prévisions probabilistes de trajectoire des cibles et également sur la couverture probabiliste des capteurs des cibles. Et pour terminer, les méthodes d’optimisation spatiales et temporelles proposées ont été intégrées et appliquées avec succès, ce qui démontre une approche complète et efficace pour l’optimisation spatio-temporelle des réseaux de capteurs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La programmation par contraintes est une technique puissante pour résoudre, entre autres, des problèmes d’ordonnancement de grande envergure. L’ordonnancement vise à allouer dans le temps des tâches à des ressources. Lors de son exécution, une tâche consomme une ressource à un taux constant. Généralement, on cherche à optimiser une fonction objectif telle la durée totale d’un ordonnancement. Résoudre un problème d’ordonnancement signifie trouver quand chaque tâche doit débuter et quelle ressource doit l’exécuter. La plupart des problèmes d’ordonnancement sont NP-Difficiles. Conséquemment, il n’existe aucun algorithme connu capable de les résoudre en temps polynomial. Cependant, il existe des spécialisations aux problèmes d’ordonnancement qui ne sont pas NP-Complet. Ces problèmes peuvent être résolus en temps polynomial en utilisant des algorithmes qui leur sont propres. Notre objectif est d’explorer ces algorithmes d’ordonnancement dans plusieurs contextes variés. Les techniques de filtrage ont beaucoup évolué dans les dernières années en ordonnancement basé sur les contraintes. La proéminence des algorithmes de filtrage repose sur leur habilité à réduire l’arbre de recherche en excluant les valeurs des domaines qui ne participent pas à des solutions au problème. Nous proposons des améliorations et présentons des algorithmes de filtrage plus efficaces pour résoudre des problèmes classiques d’ordonnancement. De plus, nous présentons des adaptations de techniques de filtrage pour le cas où les tâches peuvent être retardées. Nous considérons aussi différentes propriétés de problèmes industriels et résolvons plus efficacement des problèmes où le critère d’optimisation n’est pas nécessairement le moment où la dernière tâche se termine. Par exemple, nous présentons des algorithmes à temps polynomial pour le cas où la quantité de ressources fluctue dans le temps, ou quand le coût d’exécuter une tâche au temps t dépend de t.