4 resultados para abelianized obstruction
em Université Laval Mémoires et thèses électroniques
Resumo:
L’ingénierie des biomatériaux a connu un essor prodigieux ces dernières décennies passant de matériaux simples à des structures plus complexes, particulièrement dans le domaine cardiovasculaire. Cette évolution découle de la nécessité des biomatériaux de permettre la synergie de différentes propriétés, dépendantes de leurs fonctions, qui ne sont pas forcément toutes compatibles. Historiquement, les premiers matériaux utilisés dans la conception de dispositifs médicaux étaient ceux présentant le meilleur compromis entre les propriétés physico-chimiques, mécaniques et biologiques que nécessitait leur application. Cependant, il se peut qu’un tel dispositif possède les bonnes propriétés physico-chimiques ou mécaniques, mais que sa biocompatibilité soit insuffisante induisant ainsi des complications cliniques. Afin d’améliorer ces propriétés biologiques tout en conservant les propriétés de volume du matériau, une solution est d’en modifier la surface. L’utilisation d’un revêtement permet alors de moduler la réponse biologique à l’interface biomatériau-hôte et de diminuer les effets indésirables. Ces revêtements sont optimisés selon deux critères principaux : la réponse biologique et la réponse mécanique. Pour la réponse biologique, les deux approches principales sont de mettre au point des revêtements proactifs qui engendrent l’adhérence, la prolifération ou la migration cellulaire, ou passifs, qui, principalement, sont inertes et empêchent l’adhérence de composés biologiques. Dans certains cas, il est intéressant de pouvoir favoriser certaines cellules et d’en limiter d’autres, par exemple pour lutter contre la resténose, principalement due à la prolifération incontrôlée de cellules musculaires lisses qui conduit à une nouvelle obstruction de l’artère, suite à la pose d’un stent. La recherche sur les revêtements de stents vise, alors, à limiter la prolifération de ces cellules tout en facilitant la ré-endothélialisation, c’est-à-dire en permettant l’adhérence et la prolifération de cellules endothéliales. Dans d’autres cas, il est intéressant d’obtenir des surfaces limitant toute adhérence cellulaire, comme pour l’utilisation de cathéter. Selon leur fonction, les cathéters doivent empêcher l’adhérence cellulaire, en particulier celle des bactéries provoquant des infections, et être hémocompatibles, principalement dans le domaine vasculaire. Il a été démontré lors d’études précédentes qu’un copolymère à base de dextrane et de poly(méthacrylate de butyle) (PBMA) répondait aux problématiques liées à la resténose et qu’il possédait, de plus, une bonne élasticité, propriété mécanique importante due à la déformation que subit le stent lors de son déploiement. L’approche de ce projet était d’utiliser ce copolymère comme revêtement de stents et d’en améliorer l’adhérence à la surface en formant des liens covalents avec la surface. Pour ce faire, cela nécessitait l’activation de la partie dextrane du copolymère afin de pouvoir le greffer à la surface aminée. Il était important de vérifier pour chaque étape l’influence des modifications effectuées sur les propriétés biologiques et mécaniques des matériaux obtenus, mais aussi d’un point de vue de la chimie, l’influence que cette modification pouvait induire sur la réaction de copolymérisation. Dans un premier temps, seul le dextrane est considéré et est modifié par oxydation et carboxyméthylation puis greffé à des surfaces fluorocarbonées aminées. L’analyse physico-chimique des polymères de dextrane modifiés et de leur greffage permet de choisir une voie de modification préférentielle qui n’empêchera pas ultérieurement la copolymérisation. La carboxyméthylation permet ainsi d’obtenir un meilleur recouvrement de la surface tout en conservant la structure polysaccharidique du dextrane. Le greffage du dextrane carboxyméthylé (CMD) est ensuite optimisé selon différents degrés de modification, tenant compte aussi de l’influence que ces modifications peuvent induire sur les propriétés biologiques. Finalement, les CMD précédemment étudiés, avec des propriétés biologiques définies, sont copolymérisés avec des monomères de méthacrylate de butyle (BMA). Les copolymères ainsi obtenus ont été ensuite caractérisés par des analyses physico-chimiques, biologiques et mécaniques. Des essais préliminaires ont montrés que les films de copolymères étaient anti-adhérents vis-à-vis des cellules, ce qui a permis de trouver de nouvelles applications au projet. Les propriétés élastiques et anti-adhérentes présentées par les films de copolymères CMD-co-PBMA, les rendent particulièrement intéressants pour des applications comme revêtements de cathéters.
Resumo:
Cette thèse propose de développer des mécanismes déployables pour applications spatiales ainsi que des modes d’actionnement permettant leur déploiement et le contrôle de l’orientation en orbite de l’engin spatial les supportant. L’objectif étant de permettre le déploiement de surfaces larges pour des panneaux solaires, coupoles de télécommunication ou sections de station spatiale, une géométrie plane simple en triangle est retenue afin de pouvoir être assemblée en différents types de surfaces. Les configurations à membrures rigides proposées dans la littérature pour le déploiement de solides symétriques sont optimisées et adaptées à l’expansion d’une géométrie ouverte, telle une coupole. L’optimisation permet d’atteindre un ratio d’expansion plan pour une seule unité de plus de 5, mais présente des instabilités lors de l’actionnement d’un prototype. Le principe de transmission du mouvement d’un étage à l’autre du mécanisme est revu afin de diminuer la sensibilité des performances du mécanisme à la géométrie de ses membrures internes. Le nouveau modèle, basé sur des courroies crantées, permet d’atteindre des ratios d’expansion plans supérieurs à 20 dans certaines configurations. L’effet des principaux facteurs géométriques de conception est étudié afin d’obtenir une relation simple d’optimisation du mécanisme plan pour adapter ce dernier à différents contextes d’applications. La géométrie identique des faces triangulaires de chaque surface déployée permet aussi l’empilement de ces faces pour augmenter la compacité du mécanisme. Une articulation spécialisée est conçue afin de permettre le dépliage des faces puis leur déploiement successivement. Le déploiement de grandes surfaces ne se fait pas sans influencer lourdement l’orientation et potentiellement la trajectoire de l’engin spatial, aussi, différentes stratégies de contrôle de l’orientation novatrices sont proposées. Afin de tirer profit d’une grande surface, l’actionnement par masses ponctuelles en périphérie du mécanisme est présentée, ses équations dynamiques sont dérivées et simulées pour en observer les performances. Celles-ci démontrent le potentiel de cette stratégie de réorientation, sans obstruction de l’espace central du satellite de base, mais les performances restent en deçà de l’effet d’une roue d’inertie de masse équivalente. Une stratégie d’actionnement redondant par roue d’inertie est alors présentée pour différents niveaux de complexité de mécanismes dont toutes les articulations sont passives, c’est-à-dire non actionnées. Un mécanisme à quatre barres plan est simulé en boucle fermée avec un contrôleur simple pour valider le contrôle d’un mécanisme ciseau commun. Ces résultats sont étendus à la dérivation des équations dynamiques d’un mécanisme sphérique à quatre barres, qui démontre le potentiel de l’actionnement par roue d’inertie pour le contrôle de la configuration et de l’orientation spatiale d’un tel mécanisme. Un prototype à deux corps ayant chacun une roue d’inertie et une seule articulation passive les reliant est réalisé et contrôlé grâce à un suivi par caméra des modules. Le banc d’essai est détaillé, ainsi que les défis que l’élimination des forces externes ont représenté dans sa conception. Les résultats montrent que le système est contrôlable en orientation et en configuration. La thèse se termine par une étude de cas pour l’application des principaux systèmes développés dans cette recherche. La collecte de débris orbitaux de petite et moyenne taille est présentée comme un problème n’ayant pas encore eu de solution adéquate et posant un réel danger aux missions spatiales à venir. L’unité déployable triangulaire entraînée par courroies est dupliquée de manière à former une coupole de plusieurs centaines de mètres de diamètre et est proposée comme solution pour capturer et ralentir ces catégories de débris. Les paramètres d’une mission à cette fin sont détaillés, ainsi que le potentiel de réorientation que les roues d’inertie permettent en plus du contrôle de son déploiement. Près de 2000 débris pourraient être retirés en moins d’un an en orbite basse à 819 km d’altitude.
Resumo:
Altération de la régénération musculaire dans la maladie pulmonaire obstructive chronique. La maladie pulmonaire obstructive chronique (MPOC) est caractérisée par une obstruction bronchique irréversible et progressive. L’atrophie musculaire périphérique y est fréquente et a un impact négatif sur la capacité fonctionnelle et la survie des sujets atteints. Toutefois, on ignore si une altération du processus de régénération musculaire est un processus ayant cours dans l’atrophie musculaire périphérique. Le but de la présente thèse était donc d’étudier les cellules satellites, principales cellules responsables de la régénération musculaire dans les muscles périphériques de patients ayant une MPOC. Dans un premier temps, nous avons évalué l’historique de réplication du tissu musculaire et la sénescence des cellules satellites. Les changements morphologiques ayant lieu dans le muscle au cours de la progression de la maladie rendent le muscle plus susceptible aux dommages, induisant un raccourcissement prématuré des télomères. Un raccourcissement des télomères chez les sujets ayant une MPOC avec atrophie est concomitant avec une augmentation du nombre de cellules satellites sénescentes et de l’épuisement du potentiel de régénération compromettant le maintien de la masse musculaire chez ces sujets. Dans un deuxième et troisième temps, nous avons étudié les étapes amenant une cellule satellite vers une cellule musculaire dans les muscles périphériques et respiratoires de patients ayant une MPOC comparativement à des sujets contrôles. Les cellules satellites sont impliquées dans la réparation du tissu musculaire. Dans les cellules satellites provenant des sujets ayant une MPOC, une altération de la prolifération et de la différentiation a été observée. Ces résultats sont compatibles avec une altération de la régénération musculaire pouvant conduire à l’atrophie musculaire dans la MPOC. Le quatrième volet de ce projet s’intéressait à l’impact d’un entraînement en résistance sur l’activité des cellules satellites et le rôle joué par la myostatine dans ce contexte. La littérature montre que l’exercice en résistance est bien toléré et aide les patients ayant une MPOC à retrouver une meilleure qualité de vie. Cependant, il semble qu’ils n’y répondent pas tous aussi bien que les sujets contrôles. La capacité de réponse des cellules satellites à un entraînement en résistance semble inadéquate, suggérant ainsi un défaut de leur activation. Dans la dernière étude de cette thèse, nous avons voulu évaluer l’impact de l’inflammation systémique en étudiant SAA1, une protéine de phase aiguë et p21, une protéine du cycle cellulaire dans la dégradation des protéines des cellules musculaires. Les liens de causalité entre l’affection primaire et les différentes comorbidités demeurent nébuleux dans la MPOC. SAA1 et p21 sont augmentés dans les muscles squelettiques des patients ayant une MPOC et par ailleurs, SAA1 est capable d’induire la dégradation des protéines musculaires. Cette thèse expose les premiers éléments impliquant l’altération de la régénération musculaire avec la dysfonction musculaire observée chez les patients ayant une MPOC. Ces résultats vont certainement contribuer au développement de nouvelles thérapies et stratégies d’intervention dans le but d’améliorer la qualité de vie des personnes atteintes d’une MPOC. En somme, les travaux effectués dans le cadre de la présente thèse montrent que plusieurs mécanismes agissent de concert avec l’inactivité physique afin d’induire le phénotype dysfonctionnel dans les muscles des patients ayant une MPOC.
Resumo:
Les biofilms bactériens sont composés d’organismes unicellulaires vivants au sein d’une matrice protectrice, formée de macromolécules naturelles. Des biofilms non désirés peuvent avoir un certain nombre de conséquences néfastes, par exemple la diminution du transfert de chaleur dans les échangeurs de chaleurs, l’obstruction de membranes poreuses, la contamination des surfaces coques de navires, etc. Par ailleurs, les bactéries pathogènes qui prolifèrent dans un biofilm posent également un danger pour la santé s’ils croissent sur des surfaces médicales synthétiques comme des implants biomédicaux, cathéters ou des lentilles de vue. De plus, la croissance sur le tissu naturel par certaines souches des bactéries peut être fatale, comme Pseudomonas aeruginosa dans les poumons. Cependant, la présence de biofilms reste difficile à traiter, car les bactéries sont protégées par une matrice extracellulaire. Pour tenter de remédier à ces problèmes, nous proposons de développer une surface antisalissure (antifouling) qui libère sur demande des agents antimicrobiens. La proximité et la disposition du système de relargage placé sous le biofilm, assureront une utilisation plus efficace des molécules antimicrobiennes et minimiseront les effets secondaires de ces dernières. Pour ce faire, nous envisageons l’utilisation d’une couche de particules de silice mésoporeuses comme agents de livraison d’agents antimicrobiens. Les nanoparticules de silice mésoporeuses (MSNs) ont démontré un fort potentiel pour la livraison ciblée d’agents thérapeutiques et bioactifs. Leur utilisation en nano médecine découle de leurs propriétés de porosité intéressantes, de la taille et de la forme ajustable de ces particules, de la chimie de leur surface et leur biocompatibilité. Ces propriétés offrent une flexibilité pour diverses applications. De plus, il est possible de les charger avec différentes molécules ou biomolécules (de tailles variées, allant de l’ibuprofène à l’ARN) et d’exercer un contrôle précis des paramètres d’adsorption et des cinétiques de relargage (désorption). Mots Clés : biofilms, nanoparticules de silice mésoporeuses, microfluidique, surface antisalissure.