2 resultados para Vehicle routing problems with gains
em Université Laval Mémoires et thèses électroniques
Resumo:
La programmation par contraintes est une technique puissante pour résoudre, entre autres, des problèmes d’ordonnancement de grande envergure. L’ordonnancement vise à allouer dans le temps des tâches à des ressources. Lors de son exécution, une tâche consomme une ressource à un taux constant. Généralement, on cherche à optimiser une fonction objectif telle la durée totale d’un ordonnancement. Résoudre un problème d’ordonnancement signifie trouver quand chaque tâche doit débuter et quelle ressource doit l’exécuter. La plupart des problèmes d’ordonnancement sont NP-Difficiles. Conséquemment, il n’existe aucun algorithme connu capable de les résoudre en temps polynomial. Cependant, il existe des spécialisations aux problèmes d’ordonnancement qui ne sont pas NP-Complet. Ces problèmes peuvent être résolus en temps polynomial en utilisant des algorithmes qui leur sont propres. Notre objectif est d’explorer ces algorithmes d’ordonnancement dans plusieurs contextes variés. Les techniques de filtrage ont beaucoup évolué dans les dernières années en ordonnancement basé sur les contraintes. La proéminence des algorithmes de filtrage repose sur leur habilité à réduire l’arbre de recherche en excluant les valeurs des domaines qui ne participent pas à des solutions au problème. Nous proposons des améliorations et présentons des algorithmes de filtrage plus efficaces pour résoudre des problèmes classiques d’ordonnancement. De plus, nous présentons des adaptations de techniques de filtrage pour le cas où les tâches peuvent être retardées. Nous considérons aussi différentes propriétés de problèmes industriels et résolvons plus efficacement des problèmes où le critère d’optimisation n’est pas nécessairement le moment où la dernière tâche se termine. Par exemple, nous présentons des algorithmes à temps polynomial pour le cas où la quantité de ressources fluctue dans le temps, ou quand le coût d’exécuter une tâche au temps t dépend de t.
Resumo:
Chaque année le feu brûle quelques dizaines de milliers d’hectares de forêts québécoises. Le coût annuel de prévention et de lutte contre les feux de forêts au Québec est de l’ordre de plusieurs dizaines de millions de dollars. Le présent travail contribue à la réduction de ces coûts à travers l’automatisation du processus de planification des opérations de suppression des feux de forêts majeurs. Pour ce faire, un modèle mathématique linéaire en nombres entiers a été élaboré, résolu et testé; introduisant un nouveau cas particulier à la littérature des Problèmes de Tournées de Véhicules (VRP). Ce modèle mathématique concerne le déploiement aérien des ressources disponibles pour l’extinction des incendies. Le modèle élaboré a été testé avec CPLEX sur des cas tirés de données réelles. Il a permis de réduire le temps de planification des opérations d’extinction des feux de forêts majeurs de 75% dans les situations courantes.