1 resultado para Recognition accuracy

em Université Laval Mémoires et thèses électroniques


Relevância:

60.00% 60.00%

Publicador:

Resumo:

La machine à vecteurs de support à une classe est un algorithme non-supervisé qui est capable d’apprendre une fonction de décision à partir de données d’une seule classe pour la détection d’anomalie. Avec les données d’entraînement d’une seule classe, elle peut identifier si une nouvelle donnée est similaire à l’ensemble d’entraînement. Dans ce mémoire, nous nous intéressons à la reconnaissance de forme de dynamique de frappe par la machine à vecteurs de support à une classe, pour l’authentification d’étudiants dans un système d’évaluation sommative à distance à l’Université Laval. Comme chaque étudiant à l’Université Laval possède un identifiant court, unique qu’il utilise pour tout accès sécurisé aux ressources informatiques, nous avons choisi cette chaîne de caractères comme support à la saisie de dynamique de frappe d’utilisateur pour construire notre propre base de données. Après avoir entraîné un modèle pour chaque étudiant avec ses données de dynamique de frappe, on veut pouvoir l’identifier et éventuellement détecter des imposteurs. Trois méthodes pour la classification ont été testées et discutées. Ainsi, nous avons pu constater les faiblesses de chaque méthode dans ce système. L’évaluation des taux de reconnaissance a permis de mettre en évidence leur dépendance au nombre de signatures ainsi qu’au nombre de caractères utilisés pour construire les signatures. Enfin, nous avons montré qu’il existe des corrélations entre le taux de reconnaissance et la dispersion dans les distributions des caractéristiques des signatures de dynamique de frappe.