2 resultados para Phytoplancton
em Université Laval Mémoires et thèses électroniques
Resumo:
La croissance du phytoplancton est limitée par les faibles concentrations de fer (Fe) dans près de 40% de l’océan mondial. Le Pacifique subarctique Nord-Est représente une de ces zones limitées en fer et désignées High Nutrient - Low Chlorophyll (HNLC). Cet écosystème, dominé par des cellules de petite taille telles les prymnésiophytes, est caractérisé par de très faibles concentrations estivales de chlorophylle a et de fortes concentrations de macronutriments. Il a été maintes fois démontré que les ajouts de fer, sous différentes formes chimiques (habituellement FeSO4), dans les zones HNLC, stimulent la croissance et modifient la structure des communautés planctoniques en favorisant la croissance des cellules de grande taille, notamment les diatomées. Ces effets sur la communauté planctonique ont le potentiel d’influencer les grands mécanismes régulateurs du climat, tels la pompe biologique de carbone et la production de diméthylsulfure (DMS). Les poussières provenant des déserts du nord de la Chine sont reconnues depuis longtemps comme une source sporadique importante de fer pour le Pacifique Nord-Est. Malgré leur importance potentielle, l’influence directe exercée par ces poussières sur l’écosystème planctonique de cette zone HNLC n’a jamais été étudiée. Il s’agit d’une lacune importante puisque le fer associé aux poussières est peu soluble dans l’eau de mer, que la proportion biodisponible n’est pas connue et que les poussières peuvent avoir un effet inhibiteur chez le phytoplancton. Cette thèse propose donc, dans un premier temps, de mesurer pour la première fois l’effet de la fertilisation de la communauté planctonique du Pacifique Nord-Est par un gradient de concentrations de poussières désertiques naturelles. Cette première expérimentation a démontré que le fer contenu dans les poussières asiatiques est biodisponible et qu’une déposition équivalente à celles prenant place au printemps dans le Pacifique Nord-Est peut résulter en une stimulation significative de la prise de nutriments et de la croissance du phytoplancton. Mes travaux ont également montré que l’ajout de 0,5 mg L-1 de poussières peut résulter en la production d’autant de biomasse algale que l’ajout de FeSO4, l’espèce chimique utilisée lors des expériences d’enrichissement en fer à grande échelle. Cependant, les ajouts de FeSO4 favorisent davantage les cellules de petite taille que les ajouts de poussières, observation démontrant que le FeSO4 n’est pas un proxy parfait des poussières asiatiques. Dans un deuxième temps, je me suis intéressée à une source alternative de fer atmosphérique, les cendres volcaniques. Mon intérêt pour cette source de fer a été attisé par les observations d’une floraison spectaculaire dans le Pacifique Nord-Est, ma région d’étude, associée à l’éruption de 2008 du volcan Kasatochi dans les îles Aléoutiennes. Forte de mon expérience sur les poussières, j’ai quantifié l’effet direct de ces cendres volcaniques sur la communauté planctonique du Pacifique Nord-Est. Mes résultats ont montré que le fer contenu dans les cendres volcaniques est également biodisponible pour le phytoplancton. Ils ont également montré que cette source de fer peut être aussi importante que les poussières désertiques dans la régulation de la croissance du phytoplancton dans cette partie de l’océan global à l’échelle millénaire. Dans un troisième temps, j’ai estimé comment l’acidification des océans modulera les réponses des communautés planctoniques aux dépositions naturelles de fer mises en évidence lors de mes expériences précédentes. Pour ce faire, j’ai effectué des enrichissements de poussière dans de l’eau de mer au pH actuel de 8.0 et dans l’eau de mer acidifiée à un pH de 7.8. Mes résultats ont montré une diminution du taux de croissance du phytoplancton dans le milieu acidifié mais pas de changement notable dans la structure de la communauté. Les ajouts de poussières et de cendres, de même que les variations de pH, n’ont pas eu d’effet significatif sur la production de DMS et de son précurseur le diméthylsulfoniopropionate (DMSP), probablement en raison de la courte durée (4 jours) des expériences. L’ensemble des résultats de cette thèse montre que le fer contenu dans diverses sources atmosphériques naturelles est biodisponible pour le phytoplancton du Pacifique Nord-Est et que des taux de déposition réalistes peuvent stimuler la croissance de manière notable dans les premiers jours suivant une tempête désertique ou une éruption volcanique. Finalement, les résultats de mes expériences à stresseurs multiples Fer/acidification suggèrent une certaine résistance des communautés phytoplanctoniques à la diminution du pH prédite d’ici la fin du siècle pour les eaux de surface des océans.
Resumo:
L’Arctique s’est réchauffé rapidement et il y a urgence d’anticiper les effets que cela pourrait avoir sur les protistes à la base de la chaîne alimentaire. Le phytoplancton de l’Océan Arctique inclut les pico- et nano-eucaryotes (0.45-10 μm diamètre de la cellule) et plusieurs de ceux-ci sont des écotypes retrouvés seulement dans l’Arctique alors que d’autres sont introduits des océans plus méridionaux. Alors que les océans tempérés pénètrent dans l’Arctique, il devient pertinent de savoir si ces communautés microbiennes pourraient être modifiées. L’archipel du Svalbard est une région idéale pour observer la biogéographie des communautés microbiennes sous l’influence de processus polaires et tempérés. Bien qu’ils soient géographiquement proches, les régions côtières entourant le Svalbard sont sujettes à des intrusions alternantes de masses d’eau de l’Arctique et de l’Atlantique en plus des conditions locales. Huit sites ont été échantillonnés en juillet 2013 pour identifier les protistes selon un gradient de profondeur et de masses d’eau autour de l’archipel. En plus des variables océanographiques standards, l’eau a été échantillonnée pour synthétiser des banques d’amplicons ciblant le 18S SSU ARNr et son gène pour ensuite être séquencées à haut débit. Cinq des sites d’étude avaient de faibles concentrations de chlorophylle avec des compositions de communauté post-efflorescence dominée par les dinoflagellés, ciliés, des alvéolés parasites putatifs, chlorophycées et prymnesiophytées. L’intrusion des masses d’eau et les conditions environnementales locales étaient corrélées avec la structure des communautés ; l’origine de la masse d’eau contribuant le plus à la distance phylogénétique des communautés microbiennes. Au sein de trois fjords, de fortes concentrations de chlorophylle sous-entendaient des activités d’efflorescence. Un fjord était dominé par Phaeocystis, un deuxième par un clade arctique identifié comme un Pelagophyceae et un troisième par un assemblage mixte. En général, un signal fort d’écotypes liés à l’Arctique prédominait autour du Svalbard.